ANALIZA MOGUĆIH TEHNOLOŠKIH RJEŠENJA ZA SLUČAJEVE IZNENADNIH POVIŠENIH MUTNOĆA U VODI KRŠKIH IZVORIŠTA U HRVATSKOJ

ZAVRŠNI RAD

Mentor: doc. dr. sc. SLAVEN DOBROVIĆ
Student: NINO KOLESAR

ZAGREB, 2010.
IZJAVA

Izjavljujem da sam završni rad izradio samostalno, svojim znanjem te uz pomoć navedene literature. Zahvaljujem se mentoru doc. dr. sc. Slavenu Dobroviću na savjetima i pomoći u realizaciji ovog rada.
ZAVRŠNI ZADATAK

Student: Nino Kolesar
Mat. br.: 0035158970

Naslov: Analiza mogućih tehnoloških rješenja za slučajeve iznenadnih povišenih mutnoća u vodi krških izvorišta u Hrvatskoj

Opis zadataka:

Mnoga krška izvorišta vode u Hrvatskoj karakterizira pojava povišenih mutnoća, odnosno povišenog sadržaja suspendiranih tvari za vrijeme intenzivnijih padalina u slivnom području. S obzirom da se ovakva izvorišta često koriste za vodoopskrbne svrhe, ove pojave stvaraju brojne poteškoće među kojima su najvažnije nemogućnost poštivanja Pravilnika o zdravstvenoj ispravnosti vode za piće i onečišćenje vodoopskrbne mreže.

Za nekoliko vrsta zamućenih voda potrebno je na laboratorijskom uređaju analizirati učinkovitost sljedećih tehnoloških postupaka:
- izravna filtracija,
- koagulacija – flokulacija – filtracija,
- koagulacija – flokulacija – taloženje.

Učinkovitost postupka pratiti kroz mutnoću i sadržaj suspendiranih tvari.

Dobivene rezultate treba grafički prikazati, u raspravi analizirati, a najvažnija saznanja donijeti u zaključku.

U radu navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:
11. prosinca 2009.

Zadatak zadao:

Doc. dr. sc. Slaven Dobrović

Rok predaje rada:
Prosinac 2010.

Predsjednik Povjerenstva:

Prof. dr./sc. Zvonimir Guzović

Referada za diplomске i završne ispite
Ovaj rad obuhvaća analizu tehnoloških rješenja za slučajeve iznenadnih povišenih mutnoća u vodi krških izvorišta u Hrvatskoj. Analiza je obuhvaćala mjerenje parametara vode prije te nakon različitih postupaka predobrade i to za uzorke voda; Drava, Sava, Ponikva i Jezero Krk. Analizirana su sljedeća tehnološka rješenja: izravna filtracija, koagulacija i flokulacija s naknadnom filtracijom, koagulacija i flokulacija s naknadnim taloženjem i filtracijom. Parametri mjereni za svaki uzorak vode bili su; mutnoća, ukupni sadržaj suspendiranih tvari i SDI indeks. Na uzorku vode Save radili smo tri ponovljena postupka mjerenja i predobrade zbog određivanja srednje vrijednosti, standardne i relativne standardne pogreške. Rezultati mjerenja parametara prikazani su tablično i grafički. U okviru analize rezultata uspoređena su tehnološka rješenja za pojedine vrste vode te su doneseni određeni zaključci.
Slika 1. Prikaz odvijanja koagulacije i flokulacije [1] .. 3
Slika 2. Prikaz zeta potencijala (nV) vode u bari i koagulacijskog taloga [1] 4
Slika 3. Mikroskopski prikazi tipičnog tretiranja flokula vode .. 6
Slika 4. Korelacija između zeta potencijala i uspješnosti uklanjanja čestica nečistoće kaolina, 9
Slika 5. Turbidimetar 2100P .. 14
Slika 6. Turbidimetar 2100AN .. 14
Slika 7. Stavljanje membrane u petrijevku ... 16
Slika 8. Filtracija uzorka vode kroz membranu uz pomoć vakuum pumpe 16
Slika 9. Eksikator sa uzorcima u petrijevkama ... 17
Slika 10. Višeslojni gravitacijski filter .. 21
Slika 11. JAR tester (bez taloženja-lijeve dvije posude; flokulacija sa 100 uL FeCl3) 23
Slika 12. Eppendorf pipeta 100-1000 uL ... 23
Slika 13. Eppendorf pipeta 1-10 mL .. 23
Slika 14. JAR tester (taloženje –lijeve dvije posude; flokulacija sa 100 uL FeCl3) 24
Slika 15. Uklanjanje suspendiranih tvari izravnom filtracijom.. 32
Slika 16. Uklanjanje suspendiranih tvari koagulacijom flokulacijom, filtracijom 32
Slika 17. Uklanjanje suspendiranih tvari koagulacijom flokulacijom, filtracijom 33
Slika 18. Utjecaj povećanja doze na mutnoću i suspendirane tvari ... 33
Slika 19. Utjecaj uvođenja koagulacije flokulacije, filtracije u odnosu na izravnu filtraciju . 34
Slika 20. Uklanjanje suspendiranih tvari koagulacijom flokulacijom, taloženjem, filtracijom 34
Slika 21. Uklanjanje suspendiranih tvari koagulacijom flokulacijom, taloženjem, filtracijom 35
Slika 22. Utjecaj povećanja doze na mutnoću i suspendirane tvari ... 35
Slika 23. Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na izravnu filtraciju ... 36
Slika 24. Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na koagulaciju-flokulaciju-filtraciju ... 36
Slika 25. Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na koagulaciju-flokulaciju-filtraciju ... 37
Slika 26. Smanjenje mutnoće ovisno o uzorku ... 37
Slika 27. Smanjenje mutnoće ovisno o postupku .. 38
Slika 28. Smanjenje sadržaja suspendiranih tvari ovisno o uzorku ... 38
Slika 29. Smanjenje sadržaja suspendiranih tvari ovisno o postupku .. 39
Tablica 1. Uobičajeni anorganski kogulanti upotrebljavani u pročišćavanju vode [1.]	5
Tablica 2. Uzorci za ponovljivost rezultata mjerenja	14
Tablica 3. Uzorci za ponovljivost rezultata mjerenja	17
Tablica 4. Uzorci vode	25
Tablica 5. Mutnoća sirove vode	26
Tablica 6. Mutnoća nakon izravne filtracije	26
Tablica 7. Mutnoća nakon koagulacije flokulacije, filtracije	26
Tablica 8. Mutnoća nakon koagulacije flokulacije taloženja, filtracije	27
Tablica 9. Sadržaj suspendiranih tvari sirove vode	27
Tablica 10. Sadržaj suspendiranih tvari nakon filtracije	27
Tablica 11. Sadržaj suspendiranih tvari nakon koagulacije flokulacije, filtracije	28
Tablica 12. Sadržaj suspendiranih tvari nakon koagulacije flokulacije, taloženja, filtracije	28
Tablica 13. SDI indeks sirovih voda	28
Tablica 14. SDI indeks nakon filtracije	29
Tablica 15. SDI indeks nakon koagulacije flokulacije, filtracije	29
Tablica 16. SDI indeks nakon koagulacije flokulacije, taloženja, filtracije	29
Tablica 17. Kvaliteta sirove vode	30
Tablica 18. Svojstva vode nakon izravne filtracije	30
Tablica 19. Svojstva vode nakon koagulacije flokulacije, filtracije	31
Tablica 20. Svojstva vode nakon koagulacije flokulacije, taloženja, filtracije	31
1. UVOD

2. TEORIJSKA OSNOVA

Rješenja problema zamućenosti:

- koagulacija i flokulacija – provodi se kemijskim sredstvima čime se djeluje na granice faza čestica te time pospješujemo povećanje njihovih veličina i taloženje - nužno je kad god postoji naboj

- filtracija – efikasnost je uvjetovana veličinom čestica i vrstom filtracijske ispune, odvija se u odgovarajućim filtrima

- taloženje – efikasnost je uvjetovana veličinom i gustoćom čestica brzinom taloženja, odvija se u odgovarajućim taložnicima

<table>
<thead>
<tr>
<th>RASPON VELIČINA PRIRODNIH NEČISTOĆA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grube disperzije anorganskog i organskog porejka</td>
</tr>
<tr>
<td>10 - 10^{-3} mm</td>
</tr>
<tr>
<td>CO_{2}, O_{2}, N_{2}, H_{2}S, CH_{4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEHNOLOŠKI POSTUPCI PRIPTREME VODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZADRŽAVANJE NA SITIMA</td>
</tr>
<tr>
<td>SEDIMENTACIJA</td>
</tr>
<tr>
<td>CENTRIFUGALNA SEPARACIJA</td>
</tr>
<tr>
<td>FLOKULACIJA I KOAGULACIJA</td>
</tr>
<tr>
<td>SEDIMENTACIJA</td>
</tr>
<tr>
<td>FILTRACIJA</td>
</tr>
<tr>
<td>MEMBRANSKI POSTUPCI</td>
</tr>
<tr>
<td>OKSIDACIJSKI POSTUPCI</td>
</tr>
<tr>
<td>IONSKA IZMJENA</td>
</tr>
<tr>
<td>MEMBRANSKI POSTUPCI</td>
</tr>
<tr>
<td>RAZNI POSTUPCI OTPULJIVANJA</td>
</tr>
</tbody>
</table>
2.1. KOAGULACIJA I FLOKULACIJA

Submikronske čestice koje uzrokuju zamućenost u vodi su koloidalne \((10^{-3} – 10^{-5} \text{ mm})\), tj. one nose naboj površine zbog kojeg se odbijaju pa se ne mogu skupiti u veće čestice, koje bi bilo jednostavnije ukloniti u bilo kojem procesu pročišćavanja (Slika 1.).

![Slika 1. Prikaz odvijanja koagulacije i flokulacije [1]](image)

Taj naboj je skoro stalno negativan i tamo je kao posljedica brojnih mehanizama, najvažnijeg ionizacije funkcionalnih skupina, karboksilnih skupina na primjer, na površini čvrstih, i kao drugo apsorpcija iona ili drugih nabijenih vrsta poput polimera na površini. Važnija karakteristika je elektronski naboj na površini ravne plohe koji se zove zeta potencijal (\(\zeta\)). Većina prirodnih koloida u vodi stječe zeta potencijal između \(-5\) i \(-40 \text{ mV}\) djelomično zbog prisutnosti nabijenih skupina poput karboksilnih kiselina i oksida. Kao posljedica ovih skupina, zeta potencijal je ovisan o pH i općenito govoreći kako se pH smanjuje, naboj na površini se povećava prema nuli. pH kod kojeg je zeta potencijal nula zove se izo-električna točka (i.e.t.) čestice i važan je parametar u razumijevanju prirode koloidnih čestica.
Kiselinske skupine, poput karboksilne skupine koja izaziva znatne promjene u naboju alga i prirodnim organskim tvarima, disociraju se kod niske pH vrijednosti i stoga imaju zeta potencijal koji ostaje prilično stabilan u neutralnim i uobičajenim uvjetima. Suprotno tome, oksidi su amfoterični pa koloidne gline imaju zeta potencijal koji varira i preko kiselinskih i običnih pH vrijednosti. Hidroksid željeza je na primjer pozitivno nabijen u kiselim vodama i negativno nabijen u lužnatim vodama (Slika 2.).

Slika 2. Prikaz zeta potencijala (nV) vode u bari i koagulacijskog taloga [1]

KOAGULACIJA

Da bi uklonili te stabilne čestice iz vode, potrebno je neutralizirati negativni naboj. Postoje brojni načini destabilizacije tih čestica, ali tretiranju vode najviše odgovaraju oni koji se oslanjaju na dodavanje kemikalije koagulant. To su tipične soli metala poput željezo i aluminij sulfata (Tablica 1.).
Tablica 1. Uobičajeni anorganski kogulanti upotrebljavani u pročišćavanju vode [1]

Postoje brojni mehanizmi destabilizacije koloida:

a) kompresija difuznog sloja
b) adsorpcija kojom se neutralizira naboj
c) ugrađivanje u talog (sweep flokulacija)
d) adsorpcija koja omogućava međučestično premošćivanje.

Koagulant koji se odabere, njegovo doziranje i kvaliteta vode određuju mehanizam. Na primjer, adsorpcija kojom se neutralizira naboj je dominantni način uklanjanja za vode koje sadrže prirodne organske tvari ili alge, dok je za manju zamućenost prikladnija sweep flokulacija.

Kada se vodi dodaju koagulanti, pojavljuju se složene reakcije hidrolize. Koagulanti sadrže Al\(^{3+}\) ili Fe\(^{3+}\) koji su jako nabijeni suprotni-ioni, za većinu čestica te vrste postoje pod uvjetima kiseline (niski pH). Kod normalne vode pH tih iona reagiraju i daju različite produktna reakcija poput Al(OH)\(^{2+}\) i Al\(_{13}\)O\(_4\)(OH)\(_{12}\)\(^{7+}\) („Al\(_{13}\) polimer”), koji može jako apsorбирати на negativnim česticama i tako reducirati naboj čestica na taj način. U većini slučajeva, taloženje netopivih hidroksida, Al(OH)\(_3\) i Fe(OH)\(_3\) također se pojavljuje. Taloženje hidroksida također igra ključnu ulogu u primjenjivoj flokulaciji. Veći broj koloidnih hidroksilnih čestica se proizvodi i flokulira, te oblikuju želatinaste flokove koji uhvate većinu prvobitnih čestica u vodi. To je način sweep flokulacije i vrlo je važan kada je koncentracija čestica prilično niska (tj. za slabu zamućenost vode). Pod tim uvjetima količina kolizije čestica je niska i stoga će
flokulacija, čak za potpuno destabilizirane čestice, biti spora. Formiranje novih čestica (hidroksid taloga) značajno povećava brzinu flokulacije. Neutralizacija naboja stabilnih čestica je brza i može biti postignuta pri prilično niskim dozama koagulanta, ali doziranje treba biti proporcionalno koncentraciji onečišćenja. Sweep flokulacija se treba koristiti pri višim dozama i puno je sporija, ali potrebna doza ne bi trebala jako ovisiti o koncentraciji čestica.

Gore prikazani različiti mehanizmi doveli su do definiranja četiri zone doziranja koagulanta, sa slijedećim posljedicama za negativno nabijene čestice:

Zona 1: Vrlo nisko doziran koagulant; čestice su još negativne i stoga stabilne.

Zona 2: Doziranje je dovoljno da neutralizira naboj, a stoga i koagulant.

Zona 3: Više doziranje neutralizira naboj i restabilizira.

Zona 4: Još uvijek više doziranje daje hidroksidu taloženje i sweep flokulaciju.

FLOKULACIJA

Jednom kada se doda koagulant, čestice ubrzo postanu destabilizirane. To vodi formaciji nestabilnih mikro-flokova koji se rangiraju od 1 do oko 10 μm. Rast flokula pojavljuje se zbog kolizije s ostalim flokulama dok se ne dosegne stabilno stanje distribucije flokule. Te kolizije također mogu voditi do raspada flokula. Slika 3. prikazuje kako se flokule formiraju za vrijeme koagulacije prirodnih organskih tvari i kaolinske gline.

Slika 3. Mikroskopski prikazi tipičnog tretiranja flokula vode
Aglomeracija koloidnih čestica u flokule pojavljuje se kao rezultat brojnih osnovnih koraka koji se mogu skratiti na dva mehanička događaja:

a) čestice moraju kolizirati jedne s drugima bilo pomoću prisiljenog ili slobodnog kretanja (kolizija / transport)
b) čestice tada moraju prianjati jedne uz druge i ostati kao samostalna skupina čestica (spajanje).

Ta dva događaja na mnogo se načina, koji se obično odnose na transport i spajanje, svaki pojedinačno mogu smatrati kao neovisne radnje i moraju se posebno tretirati. U čestici je raspon koloidnih interakcija vrlo kratak, obično primjetno manji od veličine čestica. Stoga korak transporta; dvije čestice mora dovesti blizu od relativno velike duljine odvojenosti preko koje sile koloidne interakcije ne vrše nikakav utjecaj.

$$-\frac{dN}{dt} = \alpha k_F N^2 \quad [1.]$$

gdje je N broj koncentracije čestica,a je faktor korisnosti kolizije (dio kolizije koji vodi aglomeraciji) a k_F je koeficijent brzine flokulacije. Točna veličina konstante brzine ovisi o kontrolnim mehanizmima. U praktičnim situacijama postoje tri značajna mehanizma:

a) perikinetička flokulacija (difuzija)
b) ortokinetička flokulacija (kontakti koji su rezultat gibanja mase fluida)
c) diferencijalna sedimentacija.

Potpuni dizajn procesa koagulacije uključuje razmatranja; destabilizacije i prijenosa čestica. Destabilizacija se određuje i procjenjuje jar testom, dakle eksperimentalno se određuje vrsta i
doza koagulanta, dok se konstrukcijski dizajn te hidraulička ili mehanička oprema temelji na Smoluchowski-teoriji ili nekoj drugoj teoriji ortokinetičke flokulacije. Uređaji za flokulaciju (bazeni) dizajnirani su tako da omogućuju kontakte između čestica, koji su općenito izazvani ortokinetičkom flokulacijom, što znači da se kolidnoći čestice sudaraju međusobno zbog gradijenta brzine koji je stvoren unutar fluida hidrauličkim ili mehaničkim načinom. Dizajn uključuje izbor gradijenta brzine, oblik reaktora i vrijeme zadržavanja potrebno da se stvore agregati veličine pogodne za uklanjanje suspenzije u sljedećem koraku, tj. u sljedećoj jedinici (taložnik, vakuum filter, centrifuga, pješčani filter ili uređaj za sušenje).

PRIMJENA

Koagulacija i flokulacija upotrebljavaju se kao ključni proces za uklanjanje suspendiranih čestica i rastopljenih anorganskih i organskih onečišćivača. Opseg nakupina onečišćenja varira od izvora do izvora. Na primjer, voda koja dolazi iz rijeke može imati visoku količinu suspendiranih glinenih koloida, dok voda iz gorskih krajeva, područja s tresetom općenito dominiraju u NOM-u. Alge su prisutne u svim izvorskim vodama, iako se obilje razlikuje i ovisi o mjeri eutrofikacije. Rast sezonski algi može značajno ometati proces koji je optimiziran bilo za glinene ili NOM sisteme. Ovo obično rezultira povećanim uporabom koagulanta i čepljenjem filtra. Proces koaulacije je obično optimaliziran za određeni sistem u uvjetima doze koagulanta i pH, postignutog kroz niz jar testiranja. Henderson et. al. (2005.) je otkrio da su operacijski dometi različiti oviseći o onečišćivaču koji se uklanja. NOM je uspješno uklonjen između -10 mV i +5 mV, dok je veza zeta potencijala za kaolin bila puno šira kod -20 mV do +5 mV. Alge su imale optimalno simetričko uklanjanje nakupina od -12 mV do +12 mV, što je više ličilo na uklanjanje veze za NOM nego za kaolin. To ukazuje da se organske čestice puno više oslanjaju na neutralizaciju naboja za uklanjanje nego na anorganske čestice. Optimalni uvjeti za organske čestice trebaju nizak pH (pH 5-6) gdje je dominantni mehanizam uklanjanja neutralizacija naboja. Međutim, za anorganske čestice koagulacija se odvija kod pH 7. Kod ovog pH, ne samo da bi se neutralizacija naboja pojavila do tog stupnja, smatrajući da je rezultat fizičke adorpcije kationskog amorfognog hidroksida na površinu anorganske čestice (Duan & Gregory, 2003.), ali sweep flokulacija bi se također pojavila i povećala gustoće flokula.
2.2. FILTRACIJA

Filtracija je proces propuštanja vode kroz poroznu sredinu – filtarSKI materijal. Primjenjuje se za uklanjanje koloidnih čestica koje su nakon procesa taloženja preostale u vodi, naročito najsitniji koloidi koji se nisu uspjeli slijepiti u flokule, već su prosljedili tokom vode dalje. Kod procjeđivanja će i te čestice zaostati u kontaktu s filtarSKim materijalom. U vodovodnoj se praksi kao osnovni filtarSKI materijal primjenjuje kvarcni pijesak. Ova vrsta pijeska sadrži silicijev dioksid, SiO2, koji vrlo povoljno neutralizira preostale potencijalne sile koloida zaostalih u vodi nakon procesa taloženja. Na procjeđivanje se dovodi vodu s mutnoćom do 8 (iznimno 16) [°NTU], jer bi veća mutnoča izazvala prebrzo onečišćenje filtarSKog materijala, odnosno potrebu njegovog vrlo čestog pranja (čišćenja).

Filtracija je složen proces koji objedinjuje:

a) mehaničko djelovanje, koje se sastoji u odstranjivanju čestica većih od pora filtarSKog materijala,
b) adhezijsko djelovanje, koje se ogleda u prianjanju čestica na površini filtarskog materijala,

c) adsorpcijsko djelovanje, koje se očituje u pripijanju (na površini filtarskog materijala) koje s vodom prodiru u poroznu sredinu,

d) taložno djelovanje, koje se sastoji u gravitacijskom izdvajanju čestica koje s vodom prodiru u unutrašnjost filtarskog materijala,

e) kemijsko djelovanje, koje se očituje u rastavljanju (disociranju) muteži na sitnije dijelove ili u njenom pretvaranju u netopivu masu koja se potom uklanja iz vode,

f) biološko djelovanje, koje se ogleda u stvaranju biološke opne ili prevlake (filma, membrane) od mikroorganizama.

Proces filtracije se odvija u posebnim objektima – filtrima.

Ovisno o načinu kretanja vode kroz filtarski materijal, filtri se dijele na:

a) gravitacijske filtre - su otvoreni spremnici u kojima se iznad filtarskog sloja nalazi voda sa slobodnim vodnim licem. Filtracija nastaje zbog djelovanja sile teže pri visinskoj razlici dovoda i odvoda vode na filtru.

b) tlačne filtre - su zatvoreni (čelični) cilindrični spremnici u koje se voda dovodi pod tlakom. Procjeđivanje nastaje zbog razlike tlaka na dovodu i odvodu vode.

c) vakuumske filtre - su vrsta filtera kod kojih na odvodu vlada potlak.

Kod kondicioniranja vode, naročito ako se radi o uređajima većih kapaciteta, najčešće se primjenjuju gravitacijski procjeđivači.
2.3. TALOŽENJE

Čestice se mogu slegnuti na četiri prilično različita načina ovisi o relativnoj tendenciji čestica da aglomeriraju dok se talože. Kod solidno niskih koncentracija, tipično manje od 500-1000 mg l⁻¹, taloženje se pojavljuje bez interferiranja od strane susjednih čestica. Kako se koncentracija povećava, utjecaj susjednih čestica povećava brzinu taloženja. Kako se koncentracija čestica nadalje povećava, proces se mijenja od razbistravanja do spriječavanja taloženja i zgušćivanja. Kako se određena čestica taloži, tako će ubrzati pod gravitacijom, dok uzgonska sila na čestici izjednači njenu silu težu. Na ovom dijelu čestica pada pod konstantnom brzinom koja se zove brzina taloženja. Točan izraz za brzinu terminalnog taloženja ovisi o režimu toka oko čestice kako se taloži. Međutim, u većini slučajeva se u obradi pitke vode čestice padaju u laminarno polje toka (Re < 0,1) i izraz postaje poznat kao Stokesov zakon:

\[
v = \frac{2 \cdot d^2 (\rho_c - \rho)g}{9 \eta}
\]

\(v\) - brzina taloženja [m/s]
\(\rho_c\) - gustoća koloidne čestice [kg/m³]
\(\rho\) - gustoća vode [kg/m³]
\(r\) - promjer čestice [m]
\(\eta\) - dinamički viskozitet [Pas]

Gornji izraz prikazuje važnost gustoće i viskoziteta vode kod taloženja čestica. Ključni problemi odnose se na temperaturu koja ima dramatičan utjecaj na viskozitet vode takav da se čestice brže talože u toplijoj vodi tako da je moguće da se brzina udvostručuje između ljeta i zime. Brzina taloženja flokula je komplicirana ako nisu idealne sfere pri čemu se onda brzina taloženja mijenja kao funkcija veličina, strukture i gustoće. Tipične brzine taloženja se obično spominju u odnosu s pijeskom zbog njegovih nepromjenjivih svojstava i raspoloživosti. Tipične brzine taloženja pjeska (specifična težina 2,65) su 100 mm s⁻¹, 8 mm s⁻¹ i 0,154 mm s⁻¹ za čestice veličine 100μm, 100 μm, 10 μm. Normalno tretirane flokule u procesu sedimentacije uključuju NOM i mutnoću temeljnu na aglomeratima. Tipična brzina taloženja veličina vjerojatno će se formirati između 0,2 i 1 mm s⁻¹ za NOM te 0,5 i 2,5 mm s⁻¹ za mutnoću temeljenom aglomeratima.
Proces taloženja odvija se u posebnim objektima (bazenima) – taložnicima. Danas se u praksi kondicioniranja vode primjenjuju dvije osnovne vrste taložnika, ovisno od smjera toka u njima:

a) horizontalni taložnici (pravokutni, radijalni)
b) vertikalni taložnici (pravokutni, radijalni)
c) taloženje u posebnim (specijalnim) taložnicima (cijevni i pločasti (lamelni), taložnici s lebdećim muljem.)
3. LABORATORIJSKI RAD

3.1. OPIS MJERNIH UREĐAJA, POSTUPAKA I MATERIJALA

3.1.1. Mutnoća

Mutnoća je mjera stupnja do kojeg voda gubi prozirnost zbog prisutnosti suspendiranih tvari i koloida. Mutnoća vode uzrokovana je suspendiranim tvarima kao što su; glina, mulj, organske tvari; plankton i mikroskopski organizmi koji ometaju prolaz svjetlosti kroz vodu. Mjerenje mutnoće vrši se turbidimetrom. Turbidimetar mjeri apsorbiranu količinu zračenja koja prolazi kroz suspenziju. Na vrijednost raspršenja utječu veličina čestica, oblik i vrsta materijala od kojeg se sastoje.

Za mjerenje mutnoće korištena su dva uređaja:

a) turbidimetar 2100P - baterijski izvor
 - jedna svjetlosna zraka za mjerenje raspršenja svjetlosti

b) turbidimetar 2100AN - napajanje iz gradske mreže
 - tri svjetlosne zrake za mjerenje raspršenja svjetlosti
Postupak mjerenja:

a) stavljanje uzorka vode u staklenu epruvetu
b) brisanje epruvete parafilmom zbog otklanjanja kapljica i vlakana
c) stavljanje epruvete u uređaj
d) prikaz rezultata na uređaju [NTU].

Određivanje srednje vrijednosti, standardne i relativne standardne pogreške [2]
Uzorak vode: Sava

<table>
<thead>
<tr>
<th></th>
<th>Mutnoća 2100P [NTU]</th>
<th>Mutnoća 2100AN [NTU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sava 2 a</td>
<td>1,95</td>
<td>2,08</td>
</tr>
<tr>
<td>Sava 2 b</td>
<td>2,07</td>
<td>2,11</td>
</tr>
<tr>
<td>Sava 2 c</td>
<td>1,99</td>
<td>2,09</td>
</tr>
</tbody>
</table>

Tablica 2. Uzori za ponovljivost rezultata mjerenja
Turbidimetar 2100P Turbidimetar 2100AN

Srednja vrijednost:

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 2,00 \]

Srednja vrijednost:

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 2,09 \]

Standardna pogreška:

\[S_{\bar{X}} = \sqrt{ \frac{1}{n(n-1)} \sum_{i=1}^{n} (X_i - \bar{X})^2 } = 12,5 \cdot 10^{-4} \]

Standardna pogreška:

\[S_{\bar{X}} = \sqrt{ \frac{1}{n(n-1)} \sum_{i=1}^{n} (X_i - \bar{X})^2 } = 0,83 \cdot 10^{-4} \]

Relativna standardna pogreška:

\[r = \frac{S_{\bar{X}}}{\bar{X}} \cdot 100\% = 0,0625\% \]

Relativna standardna pogreška:

\[r = \frac{S_{\bar{X}}}{\bar{X}} \cdot 100\% = 0,00397\% \]

3.1.2 Suspendirane tvari

Suspendirane tvari su nerastvorljive čestice neorganskog porijekla.

Postupak mjerenja:

a) Stavljanje membrane (GF-6, veličina pora 47,0 µm, Ø47) pažljivo pincetom u petrijevku. Petrijevka prije toga treba biti očišćena; odnosno oprana demineraliziranom vodom i sušena kratko vrijeme u peći (103 °C) kako ne bi došlo do pogreške u mjerenju zbog zaostalih kapljica ili nečistoća. Zatim mjerenje preciznom vagom masu petrijevke sa membranom i bilježenje rezultata \(m_1 \).
b) Filtracija uzorka vode. Za filtriranje uzorka vode kroz membranu pomaže nam vakuum pumpa; koja nam ubrzava ovaj proces. Filtrira se željena količina vode ali radilo se sa V=1-3 L.

c) Uzimanje membrane iz filtera, te stavljanje u petrijevku. Zajedno sa petrijevkom membranu stavljamo u peć dva sata pri temperaturi od 105 °C zbog vlage sadržane u membrani. Nakon dva sata provedena u peći petrijevka se sa membranom stavlja u eksikator također dva sata radi hlađenja. Eksikator sadrži silikagel koji sprečava upijanje vlage iz zraka. Te slijedi mjerenje mase na preciznoj vagi; petrijevke sa membranom \(m_2 \).
Slika 9. Eksikator sa uzorcima u petrijevkama

Određivanje ukupnog sadržaja suspendiranih tvari:

\[TSS = \frac{m_2 - m_1}{V} \text{ [mg/L]} \]

- \(m_2 \) - masa petrijevke sa membranom prije filtracije [mg]
- \(m_1 \) - masa petrijevke sa membranom nakon filtracije [mg]
- \(V \) – volumen profiltriranog uzorka vode [L]

Određivanje srednje vrijednosti, standardne i relativne standardne pogreške [2]

Uzorak vode: Sava

<table>
<thead>
<tr>
<th>Suspendirane tvari</th>
<th>Profiltrirana količina vode (V) [L]</th>
<th>Masa prije filtracije (m_1) [g]</th>
<th>Masa nakon filtracije (m_2) [g]</th>
<th>Suspendirane tvari TSS [mg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sava 2 a</td>
<td>2</td>
<td>54,84036</td>
<td>54,84791</td>
<td>3,77</td>
</tr>
<tr>
<td>Sava 2 b</td>
<td>2</td>
<td>44,45924</td>
<td>44,46714</td>
<td>3,95</td>
</tr>
<tr>
<td>Sava 2 c</td>
<td>2</td>
<td>61,36016</td>
<td>61,36788</td>
<td>3,86</td>
</tr>
</tbody>
</table>

Tablica 3. Uzorci za ponovljivost rezultata mjerenja
Srednja vrijednost:

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 3,86 \]

Standardna pogreška:

\[S_{\tau} = \sqrt{\frac{\sum_{i=1}^{n} (X - \bar{X})^2}{n(n-1)}} = 0,01485 \]

Relativna standardna pogreška:

\[r = \frac{S_{\tau}}{\bar{X}} \cdot 100\% = 0,385\% \]

3.1.3. Mjerenje indeksa gustoće mutnoće (SDI)

SDI ispitivanja se koriste za procjenu čepljenja koje će se dogoditi u sustavima za pročišćavanje vode kao što su reverzna osmoza ili nano filtracija. Veći SDI indeks označava veći potencijal prema čepljenju sustava. Kod pročišćavanja vode reverznom osmozoj SDI indeks mora biti u određenim granicama, kako bi se osigurao efikasan rad. Prihvatljiva vrijednost je 4 SDI ili manje.

Postupak mjerenja

Postupak se temelji na mjerenju vremena potrebnog za protok određene količine srove vode kroz membranu veličine pora 0,45 \(\mu \) m i Ø47 mm uz tlak od 2,1 bar. Vrijeme se mjeri na početku, nakon 5, 10 i 15 minuta kontinuirane filtracije, te se iz dobivenih rezultata prema određenom postupku izračunava SDI indeks. Temperatura vode ne smije varirati više od \(\pm 1^\circ \text{C} \) tokom testa.
Proračun SDI [3.]:

\[P30 = \left(\frac{Tf - Ti}{Tf} \right) \times 100 \]

\[SDI = \frac{P30}{Tt} \]

P30 – čepljenje membrane na tlaku 2,1 bar
Tt – ukupno vrijeme trajanja testa [min]
 (obično 15, ali može biti i manje ako se dogodi da je P30 = 75% u manje od 15 minuta)
Ti – početno vrijeme potrebno za prikupljanje uzorka [s]
Tf – vrijeme potrebno za prikupljanje zadnjeg uzorka [s]
* Ako se protok zaustavi za manje od 5 minuta uzima se da je P30=100%, a Tt je vrijeme nakon kojeg je došlo do zaustavljanja protoka u minutama

3.2. TEHNOLOŠKI POSTUPCI

3.2.1. Izravna filtracija

Za ispitivanje korišten je višeslojni gravitacijski filtar. Kao ispuna filtra koristila se kombinacija hidroantracita i kvarcnog pijeska (Ø2,0 – 3,15 mm), koja se stavlja na drenažni sloj koji služi za odvod filtrirane vode. Primjena višeslojnih filtarskih ispuna produljuje radni ciklus filtra, omogućuje bolji učinak filtracije i povećava kapacitet filtra. Kao gornji sloj filtra najčešće se primjenjuje hidroantracit, dok se u filtracijskom i nosivom sloju nalazi kvarcni pijesak. Budući da je hidroantracit veće granulacije od kvarcnog pijeska u filtracijskom sloju, u gornjem se sloju filtra zadržavaju samo krupnije nečistoće i na taj način štiti filtracijski sloj pijeska od preuranjenog prljanja. Filtracijom na višeslojnim filtrima moguće je ostvariti uklanjanje čestica i organizama iz balastne vode promjera većih od 10μm. Time je omogućena dubinska filtracija koja ima za posljedicu određene prednosti:

- bolji učinak filtracije;
- povećanje brzine filtracije, odnosno povećanje kapaciteta;
- povećanje sigurnosti protiv proboja nečistoća;
- smanjenje specifičnog utroška vode za pranje;
- produženje trajanja radnog perioda filtra.

Gravitacijski, odnosno otvoreni filtri se projektiraju s minimalnim visinama sloja od 600 mm za kvarčni pijesak, te 400 mm za hidroantracit. Uz to se preporuča i nosivi sloj kvarčnog pijeska veći od 200 mm. Voda se filtrira silaznim tokom a pranje filtra vrši se suprotnim tokom.

Osobine filtarskog materijala kvantificiraju se sa slijedeća dva parametra:

a) efektivnim promjerom,
b) koeficijentom jednolikosti.

a) Efektivni promjer, \(d_e \) [mm] definiran je izrazom:

\[d_e = d_{10} \]

b) Koeficijent jednolikosti, \(U \) [-] definiran je odnosom:

\[U = \frac{d_{60}}{d_{10}} \leq 1,5 \]

\(d_{60} \) - promjer čestice filtracijske ispune u mm: 60 % masenog udjela filtarske ispune čine čestice manje ili jednake \(d_{60} \)
\(d_{10} \) - promjer čestice filtracijske ispune u mm: 10 % masenog udjela filtarske ispune čine čestice manje ili jednake \(d_{10} \)

Ove se veličine očitavaju s granulometrijske krivulje filtarskog materijala.
Proračun parametara filtra

Slika 10. Višeslojni gravitacijski filter

\[w = 50 \frac{dm}{h} \quad \text{brzina filtracije} \]

\[d = 0,7 \quad dm \quad \text{promjer filtra} \]

\[h = 4,8 \quad dm \quad \text{visina filtarske ispune} \]

\[A = \frac{d^2 \pi}{4} = 0,3848 \quad dm^2 \quad \text{površina poprečnog presjeka filtra} \]

\[V = w \cdot A = 19,24 \quad \frac{dm^3}{h} = 320 \quad \frac{mL}{min} \quad \text{volumenski protok kroz filter} \]

\[V_{vode} = A \cdot h \cdot 0,25 = 0,48 \quad L \quad \text{volumen vode u filtarskoj ispuni} \]

3.2.2. Koagulacija fokulacija, filtracija

Koloidne čestice mogu se praktički odstraniti iz vode jedino povećanjem veličine čestice, odnosno povećanjem brzine padanja (taloženja) na oko 2 do 4 m/h. U svrhu povećanja veličine koloidnih čestica neophodno je izbijanje naboja do ±5 mV, jer se u ovom području električki nabijene čestice mogu približiti do 10 Å (10⁻⁷ cm), kada započinje djelovanje adsorpcijske sile van der Waals-London. Izbijanje naboja koloidnih čestica zove se koagulacija, a rast skoro neutralnih čestica u veće nakupine (flokule) zove se fokulacija. Bez
koagulacije ne može nastupiti flokulacija, odnosno taloženje čestica, a samim procesom koagulacije ne možemo praktički odstraniti koloidne tvari iz vode. Za izvođenje procesa koagulacije i flokulacije koristo se JAR – tester.

Postupak koagulacije i flokulacije:

a) Preljevanje uzorka vode u sve četiri posude, pri čemu u svaku posudu se stavlja točno 2,25 L.

b) Doziranje koagulant (FeCl₃) u dvije doze kod svakog uzorka vode kako bi se vidjelo koja doza koagulant daje bolju iskoristivost postupka. Jedna doza od 100 µL dozirala se pomoću pipete (100-1000 µL) u dvije posude a druga od 200 µL pomoću iste pipete (100-1000 µL) u druge dvije posude. Nakon toga slijedi puštanje miješalica u rad 2 minute kod 140 min⁻¹.

c) Dodavanje polielektrolita. Polielektroliti su najčešće organski spojevi, čije molekule se sastoje od dugačkih lanaca koji sadrže naboje.

POLIELEKTROLIT;
teoetska doza: 0,05 – 0,5 mg/L
konzentracija otopine POLY: 0,01%
doza: 0,1 mg/L
priprema otopine: 0,01% = 0,01g/100mL = 0,1mg/100mL

Dakle otopili smo 10 mg na 100 mL demineralizirane vode. Znači da bi u 1 L bilo 0,1 mg treba dozirati 1mL 0,01%-tne otopine polielektrolita, a pošto naše posude sadrže 2,25 L doziralo se pomoću pipete (1-10 mL) 2,25 mL u sve četiri posude. Nakon dodavanja polielektrolita bilo je potrebno miješati još 4 sekunde kod 140 min⁻¹ a zatim smanjiti broj okretaja miješalica na 30 min⁻¹ i tako 4 minute čime se proces koagulacije i flokulacije završava.
Slika 11. JAR tester (bez taloženja-lijeve dvije posude; flokulacija sa 100 uL FeCl3 -desne dvije posude; flokulacija sa 200 uL FeCl3)

Slika 12. Eppendorf pipeta 100-1000 uL
Slika 13. Eppendorf pipeta 1-10 mL

Nakon koagulacije i flokulacije voda se filtrira ali za svaku dozu FeCl₃ posebno kroz višeslojni filtar uz međupranje kako bi se odstranili preostali koloidi naročito oni najsitniji.
3.2.3. Koagulacija flokulacija, taloženje, filtracija

Postupak koagulacije i flokulacije identičan je prethodnome ali sa tom razlikom da treba proći 45 minuta da se flokule istalože, a u višeslojni filter se ide samo bistratom dakako posebno sa svakom dozom FeCl₃ uz međupranje.

Slika 14. JAR tester (taloženje –lijeve dvije posude; flokulacija sa 100 uL FeCl₃ -desne dvije posude; flokulacija sa 200 uL FeCl₃)
3.4. OPIS LABORATORIJSKOG RADA

U okviru završnog rada ispitivano je nekoliko postupaka za uklanjanje suspendiranih i
koloidnih tvari iz više uzoraka realne vode. Ispitivani postupci su:
- izravna filtracija
- koagulacija-flokulacija-filtracija
- koagulacija-flokulacija-taloženje.

Uzorci vode su:

<table>
<thead>
<tr>
<th>Uzorak</th>
<th>Datum</th>
<th>Količina [L]</th>
<th>Temperatura [°C]</th>
<th>Vodostaj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sava</td>
<td>29.12.2009.</td>
<td>60</td>
<td>6</td>
<td>Vrlo visok</td>
</tr>
<tr>
<td>Sava 2</td>
<td>27.01.2010.</td>
<td>100</td>
<td>5</td>
<td>Uobičajeni</td>
</tr>
<tr>
<td>Drava</td>
<td>03.01.2010.</td>
<td>60</td>
<td>5</td>
<td>Povišeni</td>
</tr>
<tr>
<td>Ponikva</td>
<td>21.11.2009.</td>
<td>60</td>
<td>12</td>
<td>Uobičajeni</td>
</tr>
<tr>
<td>Jezero Krk</td>
<td>21.11.2009.</td>
<td>30</td>
<td>11</td>
<td>Uobičajeni</td>
</tr>
</tbody>
</table>

Tablica 4. Uzorci vode

Kvaliteta vode promatrana je kroz mutnoću, sadržaj suspendiranih tvari i SDI indeks. Varirani
su parametri kvaliteta vode i doza koagulanta.
4. REZULTATI MJERENJA

4.1. MJERENJE MUTNOĆE

<table>
<thead>
<tr>
<th></th>
<th>Mutnoća 2100P [NTU]</th>
<th>Mutnoća 2100AN [NTU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava</td>
<td>20,60</td>
<td>20,50</td>
</tr>
<tr>
<td>Sava</td>
<td>118,00</td>
<td>94,30</td>
</tr>
<tr>
<td>Sava 2 a</td>
<td>1,95</td>
<td>2,08</td>
</tr>
<tr>
<td>Sava 2 b</td>
<td>2,07</td>
<td>2,11</td>
</tr>
<tr>
<td>Sava 2 c</td>
<td>1,99</td>
<td>2,09</td>
</tr>
<tr>
<td>Ponikva</td>
<td>1,07</td>
<td>0,93</td>
</tr>
<tr>
<td>Jezero Krk</td>
<td>1,21</td>
<td>1,30</td>
</tr>
</tbody>
</table>

Tablica 5. Mutnoća sirove vode

<table>
<thead>
<tr>
<th></th>
<th>Mutnoća 2100P [NTU]</th>
<th>Mutnoća 2100AN [NTU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava</td>
<td>1,97</td>
<td>1,90</td>
</tr>
<tr>
<td>Sava</td>
<td>17,20</td>
<td>15,40</td>
</tr>
<tr>
<td>Sava 2 a</td>
<td>1,43</td>
<td>1,25</td>
</tr>
<tr>
<td>Sava 2 b</td>
<td>1,38</td>
<td>1,26</td>
</tr>
<tr>
<td>Ponikva</td>
<td>0,80</td>
<td>0,70</td>
</tr>
</tbody>
</table>

Tablica 6. Mutnoća nakon izravne filtracije

<table>
<thead>
<tr>
<th></th>
<th>Mutnoća 2100P [NTU]</th>
<th>Mutnoća 2100AN [NTU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava 100μL FeCl₃</td>
<td>0,39</td>
<td>0,20</td>
</tr>
<tr>
<td>Drava 200μL FeCl₃</td>
<td>1,09</td>
<td>1,10</td>
</tr>
<tr>
<td>Sava 100μL FeCl₃</td>
<td>0,93</td>
<td>0,87</td>
</tr>
<tr>
<td>Sava 200μL FeCl₃</td>
<td>0,43</td>
<td>0,30</td>
</tr>
<tr>
<td>Sava 2 a 100μL FeCl₃</td>
<td>1,09</td>
<td>1,01</td>
</tr>
<tr>
<td>Sava 2 a 200μL FeCl₃</td>
<td>0,98</td>
<td>0,90</td>
</tr>
<tr>
<td>Sava 2 b 100μL FeCl₃</td>
<td>1,12</td>
<td>1,02</td>
</tr>
<tr>
<td>Sava 2 b 200μL FeCl₃</td>
<td>0,91</td>
<td>0,82</td>
</tr>
<tr>
<td>Jezero Krk 100μL FeCl₃</td>
<td>0,27</td>
<td>0,21</td>
</tr>
</tbody>
</table>

Tablica 7. Mutnoća nakon koagulacije flokulacije, filtracije
Tablica 8. Mutnoća nakon koagulacije, flokulacije, taloženja, filtracije

<table>
<thead>
<tr>
<th></th>
<th>Mutnoća 2100P [NTU]</th>
<th>Mutnoća 2100AN [NTU]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava 100μL FeCl₃</td>
<td>0,24</td>
<td>0,19</td>
</tr>
<tr>
<td>Drava 200μL FeCl₃</td>
<td>0,52</td>
<td>0,40</td>
</tr>
<tr>
<td>Sava 100μL FeCl₃</td>
<td>0,51</td>
<td>0,47</td>
</tr>
<tr>
<td>Sava 200μL FeCl₃</td>
<td>0,33</td>
<td>0,25</td>
</tr>
<tr>
<td>Sava 2 a 100μL FeCl₃</td>
<td>0,43</td>
<td>0,35</td>
</tr>
<tr>
<td>Sava 2 a 200μL FeCl₃</td>
<td>0,40</td>
<td>0,30</td>
</tr>
<tr>
<td>Sava 2 b 100μL FeCl₃</td>
<td>0,50</td>
<td>0,42</td>
</tr>
<tr>
<td>Sava 2 b 200μL FeCl₃</td>
<td>0,33</td>
<td>0,23</td>
</tr>
<tr>
<td>Ponikva 100μL FeCl₃</td>
<td>0,33</td>
<td>0,26</td>
</tr>
</tbody>
</table>

4.2. MJERENJE UKUPNOG SADRŽAJA SUSPENDIRANIH TVARI

<table>
<thead>
<tr>
<th></th>
<th>Profiltrirana količina vode [L]</th>
<th>Masa prije filtracije [g]</th>
<th>Masa nakon filtracije [g]</th>
<th>Suspendirane tvari [mg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava</td>
<td>1</td>
<td>60,74964</td>
<td>60,76388</td>
<td>14,24</td>
</tr>
<tr>
<td>Sava</td>
<td>1</td>
<td>61,37356</td>
<td>61,46824</td>
<td>94,68</td>
</tr>
<tr>
<td>Sava 2 a</td>
<td>2</td>
<td>54,84036</td>
<td>54,84791</td>
<td>3,77</td>
</tr>
<tr>
<td>Sava 2 b</td>
<td>2</td>
<td>44,45924</td>
<td>44,46714</td>
<td>3,95</td>
</tr>
<tr>
<td>Sava 2 c</td>
<td>2</td>
<td>61,36016</td>
<td>61,36788</td>
<td>3,86</td>
</tr>
<tr>
<td>Ponikva</td>
<td>3</td>
<td>53,15785</td>
<td>53,16174</td>
<td>1,30</td>
</tr>
<tr>
<td>Jezero Krk</td>
<td>3</td>
<td>59,93185</td>
<td>59,93713</td>
<td>1,76</td>
</tr>
</tbody>
</table>

Tablica 9. Sadržaj suspendiranih tvari sirove vode

<table>
<thead>
<tr>
<th></th>
<th>Profiltrirana količina vode [L]</th>
<th>Masa prije filtracije [g]</th>
<th>Masa nakon filtracije [g]</th>
<th>Suspendirane tvari [mg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava</td>
<td>1</td>
<td>53,17185</td>
<td>53,18086</td>
<td>9,01</td>
</tr>
<tr>
<td>Sava</td>
<td>1</td>
<td>59,92518</td>
<td>59,93620</td>
<td>11,02</td>
</tr>
<tr>
<td>Sava 2 a</td>
<td>2</td>
<td>60,73750</td>
<td>60,74402</td>
<td>3,26</td>
</tr>
<tr>
<td>Sava 2 b</td>
<td>2</td>
<td>48,74788</td>
<td>48,75484</td>
<td>3,48</td>
</tr>
<tr>
<td>Ponikva</td>
<td>1,5</td>
<td>60,74608</td>
<td>60,74785</td>
<td>1,18</td>
</tr>
</tbody>
</table>

Tablica 10. Sadržaj suspendiranih tvari nakon filtracije
Profiltrirana količina vode [L]	Masa prije filtracije [g]	Masa nakon filtracije [g]	Suspendirane tvari [mg/L]
Drava 100μL FeCl₃ | 1,5 | 54,85474 | 54,85691 | 1,45
Drava 200μL FeCl₃ | 1,5 | 55,12155 | 55,13152 | 6,65
Sava 100μL FeCl₃ | 1,5 | 61,37230 | 61,37775 | 3,63
Sava 200μL FeCl₃ | 1,5 | 59,92316 | 59,92545 | 1,53
Sava 2 a 100μL FeCl₃ | 2 | 54,84611 | 54,85022 | 2,05
Sava 2 a 200μL FeCl₃ | 2 | 61,36694 | 61,37116 | 2,11
Sava 2 b 100μL FeCl₃ | 2 | 44,46164 | 44,46607 | 2,21
Sava 2 b 200μL FeCl₃ | 2 | 60,75058 | 60,75472 | 2,07
Jezero Krk 100μL FeCl₃ | 1,5 | 48,76120 | 48,76199 | 0,53

Tablica 11. Sadržaj suspendiranih tvari nakon koagulacije flokulacije, filtracije

Profiltrirana količina vode [L]	Masa prije filtracije [g]	Masa nakon filtracije [g]	Suspendirane tvari [mg/L]
Drava 100μL FeCl₃ | 2 | 54,84710 | 54,84931 | 1,10
Drava 200μL FeCl₃ | 2 | 55,12105 | 55,12840 | 3,67
Sava 100μL FeCl₃ | 2 | 61,36470 | 61,37082 | 3,06
Sava 200μL FeCl₃ | 2 | 59,92147 | 59,92405 | 1,29
Sava 2 a 100μL FeCl₃ | 2 | 61,36475 | 61,36771 | 1,48
Sava 2 a 200μL FeCl₃ | 2 | 54,84345 | 54,84631 | 1,43
Sava 2 b 100μL FeCl₃ | 2 | 60,75148 | 60,75470 | 1,61
Sava 2 b 200μL FeCl₃ | 2 | 44,46197 | 44,46459 | 1,31
Ponikva 100μL FeCl₃ | 2 | 57,64733 | 57,64912 | 0,89

Tablica 12. Sadržaj suspendiranih tvari nakon koagulacije flokulacije, taloženja, filtracije

4.3. MJERENJE SDI INDEKSA

<table>
<thead>
<tr>
<th>Voda</th>
<th>SDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava</td>
<td>35,8</td>
</tr>
<tr>
<td>Sava</td>
<td>40,3</td>
</tr>
<tr>
<td>Sava 2 a</td>
<td>17,7</td>
</tr>
<tr>
<td>Sava 2 b</td>
<td>18,7</td>
</tr>
<tr>
<td>Sava 2 c</td>
<td>18,3</td>
</tr>
<tr>
<td>Ponikva</td>
<td>6,5</td>
</tr>
<tr>
<td>Jezero Krk</td>
<td>9,8</td>
</tr>
</tbody>
</table>

Tablica 13. SDI indeks sirovih voda
<table>
<thead>
<tr>
<th></th>
<th>SDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava</td>
<td>20,6</td>
</tr>
<tr>
<td>Sava</td>
<td>35,5</td>
</tr>
<tr>
<td>Sava 2 a</td>
<td>16,1</td>
</tr>
<tr>
<td>Sava 2 b</td>
<td>14,9</td>
</tr>
<tr>
<td>Ponikva</td>
<td>5</td>
</tr>
</tbody>
</table>

Tablica 14. SDI indeks nakon filtracije

<table>
<thead>
<tr>
<th></th>
<th>SDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava 100μL FeCl₃</td>
<td>7,7</td>
</tr>
<tr>
<td>Drava 200μL FeCl₃</td>
<td>18,1</td>
</tr>
<tr>
<td>Sava 100μL FeCl₃</td>
<td>16,5</td>
</tr>
<tr>
<td>Sava 200μL FeCl₃</td>
<td>8,7</td>
</tr>
<tr>
<td>Sava 2 a 100μL FeCl₃</td>
<td>12,0</td>
</tr>
<tr>
<td>Sava 2 a 200μL FeCl₃</td>
<td>11,5</td>
</tr>
<tr>
<td>Sava 2 b 100μL FeCl₃</td>
<td>12,9</td>
</tr>
<tr>
<td>Sava 2 b 200μL FeCl₃</td>
<td>11,4</td>
</tr>
<tr>
<td>Jezero Krk 100μL FeCl₃</td>
<td>2,9</td>
</tr>
</tbody>
</table>

Tablica 15. SDI indeks nakon koagulacije flokulacije, filtracije

<table>
<thead>
<tr>
<th></th>
<th>SDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava 100μL FeCl₃</td>
<td>4,5</td>
</tr>
<tr>
<td>Drava 200μL FeCl₃</td>
<td>9,5</td>
</tr>
<tr>
<td>Sava 100μL FeCl₃</td>
<td>9,3</td>
</tr>
<tr>
<td>Sava 200μL FeCl₃</td>
<td>5,4</td>
</tr>
<tr>
<td>Sava 2 a 100μL FeCl₃</td>
<td>5,9</td>
</tr>
<tr>
<td>Sava 2 a 200μL FeCl₃</td>
<td>5,9</td>
</tr>
<tr>
<td>Sava 2 b 100μL FeCl₃</td>
<td>6,9</td>
</tr>
<tr>
<td>Sava 2 b 200μL FeCl₃</td>
<td>5</td>
</tr>
<tr>
<td>Ponikva 100μL FeCl₃</td>
<td>3,6</td>
</tr>
</tbody>
</table>

Tablica 16. SDI indeks nakon koagulacije flokulacije, taloženja, filtracije
4.4. KVALITETA SIROVE VODE

<table>
<thead>
<tr>
<th></th>
<th>Mutnoća 2100AN [NTU]</th>
<th>Suspendirane tvari [mg/L]</th>
<th>SDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava</td>
<td>20,50</td>
<td>14,24</td>
<td>35,8</td>
</tr>
<tr>
<td>Sava</td>
<td>94,30</td>
<td>94,68</td>
<td>40,3</td>
</tr>
<tr>
<td>Sava 2</td>
<td>2,09</td>
<td>3,86</td>
<td>18,2</td>
</tr>
<tr>
<td>Ponikva</td>
<td>0,93</td>
<td>1,30</td>
<td>6,5</td>
</tr>
<tr>
<td>Jezero Krk</td>
<td>1,30</td>
<td>1,76</td>
<td>9,8</td>
</tr>
</tbody>
</table>

Tablica 17. Kvaliteta sirove vode

4.5. IZRAVNA FILTRACIJA

<table>
<thead>
<tr>
<th></th>
<th>Mutnoća 2100AN [NTU]</th>
<th>Suspendirane tvari [mg/L]</th>
<th>SDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava</td>
<td>1,90</td>
<td>9,01</td>
<td>20,6</td>
</tr>
<tr>
<td>Sava</td>
<td>15,40</td>
<td>11,02</td>
<td>35,5</td>
</tr>
<tr>
<td>Sava 2</td>
<td>1,25</td>
<td>3,37</td>
<td>15,5</td>
</tr>
<tr>
<td>Ponikva</td>
<td>0,70</td>
<td>1,18</td>
<td>5</td>
</tr>
</tbody>
</table>

Tablica 18. Svojstva vode nakon izravne filtracije
4.6. KOAGULACIJA FLOKULACIJA, FILTRACIJA

Tablica 19. Svojstva vode nakon koagulacije flokulacije, filtracije

<table>
<thead>
<tr>
<th>Lokalnost</th>
<th>Mutnoća 2100AN [NTU]</th>
<th>Suspendirane tvari [mg/L]</th>
<th>SDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava 100μL FeCl₃</td>
<td>0,20</td>
<td>1,45</td>
<td>7,7</td>
</tr>
<tr>
<td>Drava 200μL FeCl₃</td>
<td>1,10</td>
<td>6,65</td>
<td>18,1</td>
</tr>
<tr>
<td>Sava 100μL FeCl₃</td>
<td>0,87</td>
<td>3,63</td>
<td>16,5</td>
</tr>
<tr>
<td>Sava 200μL FeCl₃</td>
<td>0,30</td>
<td>1,53</td>
<td>8,7</td>
</tr>
<tr>
<td>Sava 2 100μL FeCl₃</td>
<td>1,01</td>
<td>2,13</td>
<td>12,4</td>
</tr>
<tr>
<td>Sava 2 200μL FeCl₃</td>
<td>0,86</td>
<td>2,09</td>
<td>11,4</td>
</tr>
<tr>
<td>Jezero Krk 100μL FeCl₃</td>
<td>0,21</td>
<td>0,53</td>
<td>2,9</td>
</tr>
</tbody>
</table>

4.7. KOAGULACIJA FLOKULACIJA, TALOŽENJE, FILTRACIJA

Tablica 20. Svojstva vode nakon koagulacije flokulacije, taloženja, filtracije

<table>
<thead>
<tr>
<th>Lokalnost</th>
<th>Mutnoća 2100AN [NTU]</th>
<th>Suspendirane tvari [mg/L]</th>
<th>SDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drava 100μL FeCl₃</td>
<td>0,19</td>
<td>1,10</td>
<td>4,5</td>
</tr>
<tr>
<td>Drava 200μL FeCl₃</td>
<td>0,40</td>
<td>3,67</td>
<td>9,5</td>
</tr>
<tr>
<td>Sava 100μL FeCl₃</td>
<td>0,47</td>
<td>3,06</td>
<td>9,3</td>
</tr>
<tr>
<td>Sava 200μL FeCl₃</td>
<td>0,25</td>
<td>1,29</td>
<td>5,4</td>
</tr>
<tr>
<td>Sava 2 100μL FeCl₃</td>
<td>0,39</td>
<td>1,54</td>
<td>6,4</td>
</tr>
<tr>
<td>Sava 2 200μL FeCl₃</td>
<td>0,26</td>
<td>1,37</td>
<td>5,4</td>
</tr>
<tr>
<td>Ponikva 100μL FeCl₃</td>
<td>0,26</td>
<td>0,89</td>
<td>3,6</td>
</tr>
</tbody>
</table>
5. ANALIZA REZULTATA

5.1. USPJEŠNOST UKLANJANJA SUSPENDIRANIH TVARI IZRAVnom FILTRACIJOM

Slika 15. Uklanjanje suspendiranih tvari izravnom filtracijom

5.2. UTJECAJ UVODENJA KOAGULACIJE FLOKULACIJE, FILTRACIJE

- Doza 100μL FeCl₃

Slika 16. Uklanjanje suspendiranih tvari koagulacijom flokulacijom, filtracijom
- Doza 200μL FeCl₃

Slika 17. Uklanjanje suspendiranih tvari koagulacijom flokulacijom, filtracijom

- Utjecaj povećanja doze sa 100μL FeCl₃ na 200μL FeCl₃

Slika 18. Utjecaj povećanja doze na mutnoću i suspendirane tvari
- Povećanje efikasnosti tehnološkog postupka koagulacije-flokulacije (100 μL FeCl₃)-filtracije u odnosu na izravnu filtraciju

![Graph showing the effect of introducing coagulation-flocculation, filtration compared to direct filtration.](image1)

Slika 19. Utjecaj uvođenja koagulacije fokulacije, filtracije u odnosu na izravnu filtraciju

5.3. UTJECAJ UVOĐENJA KOAGULACIJE FLOKULACIJE, TALOŽENJA, FILTRACIJE

- Doza 100 μL FeCl₃

![Graph showing the removal of suspended matter by coagulation, flocculation, deposition, filtration.](image2)

Slika 20. Uklanjanje suspendiranih tvari koagulacijom fokulacijom, taloženjem, filtracijom
- Doza 200μL FeCl₃

![Diagram](image)

Slika 21. Uklanjanje suspendiranih tvari koagulacijom flokulacijom, taloženjem, filtracijom

- Utjecaj povećanja doze sa 100μL FeCl₃ na 200μL FeCl₃

![Diagram](image)

Slika 22. Utjecaj povećanja doze na mutnoću i suspendirane tvari
- Povećanje efikasnosti tehnološkog postupka koagulacije-flokulacije (100μL FeCl₃)-taloženja i filtracije u odnosu na izravnu filtraciju

![Diagram za Sliku 23. Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na izravnu filtraciju](image1.png)

Slika 23. Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na izravnu filtraciju

- Povećanje efikasnosti tehnološkog postupka koagulacije-flokulacije (100μL FeCl₃)-taloženja i filtracije u odnosu na koagulaciju-flokulaciju (100μL FeCl₃)-filtraciju

![Diagram za Sliku 24. Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na koagulaciju-flokulaciju-filtraciju](image2.png)

Slika 24. Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na koagulaciju-flokulaciju-filtraciju
Povećanje efikasnosti tehnološkog postupka koagulacije-flokulacije (200μL FeCl₃)-taloženja i filtracije u odnosu na koagulaciju-flokulaciju (200μL FeCl₃)-filtraciju

Slika 25. Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na koagulaciju-flokulaciju-filtraciju

5.4. UTJECAJ TEHNOLOŠKIH POSTUPAKA ZA POJEDINE VRSTE VODE

5.4.1. Mjerni parametar mutnoća

Slika 26. Smanjenje mutnoće ovisno o uzorku
5.4.2. Mjerni parametar suspendirane tvari

Slika 27. Smanjenje mutnoće ovisno o postupku

Slika 28. Smanjenje sadržaja suspendiranih tvari ovisno o uzorku
Slika 29. Smanjenje sadržaja suspendiranih tvari ovisno o postupku
7. ZAKLJUČAK

Za uzorke sirove ve prirodne vode iz rijeke Drave i Save, te jezera Ponikve i Jezero na otoku Krku načinjeno je laboratorijsko ispitivanje učinkovitosti sljedećih tehnoloških postupaka:
- izravna filtracija
- koagulacija-flokulacija-filtracija
- koagulacija-flokulacija-filtracija-taloženje.

Temeljem dobivenih rezultata, za pojedine stupnjeve obrade vode donose se sljedeći zaključci:

1. IZRAVNA FILTRACIJA
- Izravnom filtracijom moguće je postići vrlo visoke učinke u smanjenju sadržaja grubih i finih disperzija. Tako npr. za uzorak Save se izravnom filtracijom smanji mutnoća za 82% a suspendirane tvari smanje se za 89%; Slika 15. To je posljedica činjenice da se radi o uzorku vrlo visoke mutnoće, odnosno većeg udjela grubo dispergiranih tvari, te su veće čestice pa se lakše filtriraju.
- Međutim za uzorke voda s nižim inicijalnim sadržajem suspendiranih tvari odnosno sa većim udjelom koloidnih tvari visoki učinak uklanjanja moguće je postići tek uvođenjem koagulacije i fokulacije. To ilustriraju rezultati rada sa Savskom vodom kod uobičajenih hidroloških uvjeta (Sava 2).

2. KOAGULACIJA-FLOKULACIJA-FILTRACIJA
- Koagulacija-flokulacija-filtracija provedena je sa dvije doze koagulanta od 100μL FeCl₃ i 200μL FeCl₃ a njihov utjecaj na mutnoću i suspendirane tvari može se vidjeti na Slici 18. Na slici se vidi da povećanje doze utječe na smanjenje mutnoće i suspendiranih tvari za rijeku Savu dok za Dravu nema poboljšanja efikasnosti sa većom dozom nego isključivo sa manjom. Iz razlike je vidljivo da je potrebno optimirati doze koagulanta za pojedinu vrstu vode koja se namjerava obrađivati ovim postupkom.
- Usporede li se tehnološki postupak koagulacije-flokulacije (100μL FeCl₃)-filtracije u odnosu na izravnu filtraciju zamjećuje se povećanje efikasnosti kod svih uzoraka voda; najveće kod Save za mutnoću; 16% a kod Drave za suspendirane tvari; 53% Slika 19.

3. KOAGULACIJA-FLOKULACIJA-TALOŽENJE-FILTRACIJA
- Koagulacija-flokulacija-taloženje-filtracija utječe značajno na poboljšanja efikasnosti uklanjanja kod većih sadržaja koloidnih tvari.
- Utjecaj uvođenja koagulacije-flokulacije-taloženja-filtracije u odnosu na koagulaciju-flokulaciju-filtraciju može se vidjet na Slici 24. i Slici 25. Vidi se da za dozu od 100μL FeCl₃ povećanje efikasnosti uklanjanja se pimjetno javlja za Savu 2 koja ima veću zamućenost, dok za dozu 200μL FeCl₃ izraženije je kod Drave i Save 2. Može se pretpostaviti da je tomu nešto veći sadržaj koloidnih tvari kod tih voda.

U svakom slučaju, iz dobiveni rezultati sugeriraju potrebu da se ovim problemima pristupi sustavno te da je prije izbora tehnološkog rješenja potrebno načiniti ovakvu usporedbu tehnoloških postupaka. Optimalan izbor omoguće veću kvalitetu vode te niže pogonske i investicijske troškove.
8. POPIS LITERATURE