Primjena umjetne inteligencije u optimizaciji rada obradnih sustava

Pavušek, Nikola (2010) Primjena umjetne inteligencije u optimizaciji rada obradnih sustava. = Master's thesis (Bologna) , Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, UNSPECIFIED. Mentor: Udiljak, Toma.

[img] Text
14_10_2010_Nikola_Pavusek_-_diplomski_rad.pdf - Published Version
Restricted to IP adress Jezik dokumenta:Croatian

Download (3MB)

Abstract (Croatian)

U radu su prikazane mogućnosti korištenja nekonvencionalnih tehnika optimizacije obradnih sustava. Najkorištenije tehnike uključuju primjenu umjetnih neuronskih mreža, genetskih algoritama, te tehnika optimizacije baziranih na matematičkom opisu prirodnih procesa (optimizacija kolonijom mrava, optimizacija rojem čestica (inteligencija rojeva)). Matematički modeli procesa koji se javljaju u procesu obrade prikazani su sa ciljem pobližeg upoznavanja sa problem optimizacije. Dan je prikaz optimizacije pojedinih procesa obrade, te je dana usporedba dobivenih rezultata ovisno o korištenim algoritmima optimizacije. Primjena genetskih algoritama prikazana je u rješavanju problema optimizacije putanje alata. Također je prikazano jedno od mogućih rješenja nadzora stanja alata korištenjem umjetnih neuronskih mreža i tehnike spajanja signala senzora.

Abstract

The theme of this work is application of artificial intelligence in optimization of manufacturing systems work. Modern manufacturing is based on application of techniques whose objective is improvement of current capability of manufacturing systems. Many researchers conducted in the World are based on possibilities of implementation artificial neural networks in manufacturing supervision systems. Application of genetic algorithms is possible in all areas, where is system optimization needed; in which conventional optimization methods doesn´t provide satisfactory result. Genetic algorithms have property of function global extreme searching, which in some conventional optimization methods isn´t possible. Base of this work is comparison of conventional optimization techniques and optimization techniques based on artificial intelligence, and their implementation in manufacturing systems. In second part of this work, mathematical models of manufacturing processes are given as fundamental models on which are based conventional optimization methods. In part three are presented and described conventional approaches and optimization results of some manufacturing processes. Part three is meant to provide possibility to compare conventional optimization methods with optimization methods based on artificial intelligence. In part four is presented tool path optimization model based on genetic algorithms. Given that, the tool positioning time in some manufacturing processes is great, optimization enabled reducing of needed tool positioning time, and with that faster production. Part five represents concept of intelligent manufacturing system, with representation of all vital functioning parts of manufacturing system, and are given bases of manufacturing system automatization control. In part six are given research results obtained by application of artificial neural networks in tool wear monitoring systems, and in chapter seven is conclusion of this work.

Item Type: Thesis (Master's thesis (Bologna))
Uncontrolled Keywords: nekonvencionalne tehnike optimizacije; inteligentni obradni sustavi; umjetne neuronske mreže; genetski algoritmi
Keywords (Croatian): artificial intelligence, optimization techniques, artificial neural networks, genetic algorithms, ant colony optimization, particle swarm optimization
Divisions: 1200 Department of Technology > 1230 Chair of Machine Tools
Date Deposited: 22 Sep 2014 18:00
Last Modified: 16 Oct 2015 13:09
URI: http://repozitorij.fsb.hr/id/eprint/1096

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

Nema podataka za dohvacanje citata