DIPLOMSKI RAD

Tomislav Kovačić

Zagreb, 2012.
DIPLOMSKI RAD

Mentor: Dr. sc. Dražen Lončar, izv. prof.

Student: Tomislav Kovačić

Zagreb, 2012.
Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru prof. dr. sc. Draženu Lončaru na pomoći pri izradi ovog rada.

Tomislav Kovačić
SADRŽAJ

<table>
<thead>
<tr>
<th>Poglavlje</th>
<th>Naslov</th>
<th>stranice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>UVOD</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>POGON TERMOENERGETSKOG BLOKA</td>
<td>4</td>
</tr>
<tr>
<td>2.1.</td>
<td>Pogonski režimi termoenergetskog bloka</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1.</td>
<td>Stacionarni pogon bloka</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.</td>
<td>Nestacionarni pogon bloka</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.1.</td>
<td>Promjena opterećenja</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.2.</td>
<td>Minimalna snaga</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2.3.</td>
<td>Uključivanja i isključivanja iz pogona</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>OPIS PROCESA</td>
<td>12</td>
</tr>
<tr>
<td>3.1.</td>
<td>Generator pare</td>
<td>14</td>
</tr>
<tr>
<td>3.2.</td>
<td>Regulacijski sustav termoenergetskog bloka</td>
<td>15</td>
</tr>
<tr>
<td>4.</td>
<td>MATERIJALI</td>
<td>17</td>
</tr>
<tr>
<td>4.1.</td>
<td>Čvrstoća</td>
<td>17</td>
</tr>
<tr>
<td>4.2.</td>
<td>Procjena životnog vijeka materijala</td>
<td>18</td>
</tr>
<tr>
<td>4.3.</td>
<td>Temperaturna naprezanja</td>
<td>19</td>
</tr>
<tr>
<td>4.4.</td>
<td>Metode procjene temperaturnih naprezanja</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>MATEMATIČKI MODEL</td>
<td>22</td>
</tr>
<tr>
<td>5.1.</td>
<td>Osnovne značajke matematičkog modela</td>
<td>22</td>
</tr>
<tr>
<td>5.1.1.</td>
<td>Dvofazno strujanje</td>
<td>22</td>
</tr>
</tbody>
</table>
5.2. Izvod matematičkog modela ... 23
 5.2.1. Strujanje fluida u cijevi .. 24
 5.2.1.1. Diskretizacija jednadžbe očuvanja mase 26
 5.2.1.2. Diskretizacija jednadžbe očuvanja količine gibanja 27
 5.2.1.3. Diskretizacija jednadžbe očuvanja energije 29
 5.2.2. Temperatura stijenke grijane cijevi .. 31
 5.2.3. Temperatura stijenke kolektora ... 34
 5.2.4. Temperaturna naprezanja u stijenci kolektora 35
 5.2.5. Dimni plinovi .. 37
 5.3. Početni i rubni uvjeti .. 37
 5.4. Postupak rješavanja .. 38
6. SIMULACIJA ... 41
 6.1. Upuštanje u pogon termoelektrane ... 42
 6.1.1. Hladni start .. 43
 6.1.2. Topli start .. 48
 6.1.3. Vrući start .. 54
 6.2. Ispitivanje promjene brzine temperature i tlaka pare 58
 6.2.1. Ubrzani hladni start .. 58
 6.2.2. Ubrzani topli start ... 63
 6.2.3. Ubrzani vrući start .. 67
 6.3. Pogonski poremećaj .. 72
7. ZAKLJUČAK ... 76
LITERATURA ... 78
POPIS SLIKA

Slika 4. Pojednostavljena shema termoenergetskog bloka .. 13
Slika 7. Cijev vodeno-parnog trakta ... 25
Slika 8. Slojevi stijenke vodeno-parnog trakta ... 32
Slika 9. Dopuštena naprezanja materijala s obzirom na temperaturu 42
Slika 10. Temperatura pare prilikom hladnog starta ... 43
Slika 11. Tlak pare prilikom hladnog starta .. 44
Slika 12. Temperaturni profil stijenke prilikom hladnog starta 45
Slika 13. Temperaturna naprezanja u stijenci kolektora prilikom hladnog starta 45
Slika 14. Ukupna naprezanja u stijenci kolektora prilikom hladnog starta 46
Slika 15. Razlike dopuštenog i izračunatog naprezanja prilikom hladnog starta 47
Slika 16. Zaliha naprezanja za stijenku kolektora prilikom hladnog starta 48
Slika 17. Temperatura pare prilikom toplog starta ... 49
Slika 18. Tlak pare prilikom toplog starta ... 50
Slika 19. Temperaturni profil stijenke prilikom toplog starta .. 51
Slika 20. Temperaturna naprezanja u stijenci kolektora prilikom toplog starta 51
Slika 21. Ukupna naprezanja u stijenci kolektora prilikom toplog starta 52
Slika 22. Razlike dopuštenog i izračunatog naprezanja prilikom toplog starta 53
Slika 23. Zaliha naprezanja za stijenku kolektora prilikom toplog starta.......................... 53
Slika 24. Temperatura pare prilikom vrućeg starta.. 54
Slika 25. Tlak pare prilikom vrućeg starta... 55
Slika 26. Temperaturni profil stijenke prilikom vrućeg starta..................................... 55
Slika 27. Temperaturna naprezanja u stijenci kolektora prilikom vrućeg starta.......... 56
Slika 28. Ukupna naprezanja u stijenci kolektora prilikom vrućeg starta 57
Slika 29. Razlike dopuštenog i izračunatog naprezanja prilikom vrućeg starta 57
Slika 30. Zaliha naprezanja za stijenku kolektora prilikom vrućeg starta 58
Slika 31. Temperatura pare prilikom ubrzanog hladnog starta.................................... 59
Slika 32. Tlak pare prilikom ubrzanog hladnog starta.. 59
Slika 33. Temperaturni profil stijenke prilikom ubrzanog hladnog starta................. 60
Slika 34. Temperaturna naprezanja u stijenci kolektora prilikom ubrzanog hladnog starta... 60
Slika 35. Ukupna naprezanja u stijenci kolektora prilikom ubrzanog hladnog starta 61
Slika 36. Razlike dopuštenog i izračunatog naprezanja prilikom hladnog starta 62
Slika 37. Zaliha naprezanja za stijenku kolektora prilikom ubrzanog hladnog starta 62
Slika 38. Temperatura pare prilikom ubrzanog toplog starta....................................... 63
Slika 39. Tlak pare prilikom ubrzanog toplog starta.. 64
Slika 40. Temperaturni profil stijenke prilikom ubrzanog toplog starta..................... 64
Slika 41. Temperaturna naprezanja u stijenci kolektora prilikom ubrzanog toplog starta... 65
Slika 42. Ukupna naprezanja u stijenci kolektora prilikom ubrzanog toplog starta 66
Slika 43. Razlike dopuštenog i izračunatog naprezanja prilikom ubrzanog toplog starta66
Slika 44. Zaliha naprezanja za stijenku kolektora prilikom ubrzanog toplog starta 67
Slika 45. Temperatura pare prilikom ubrzanog vrućeg starta...................................... 68
Slika 46. Tlak pare prilikom ubrzanog vrućeg starta... 68
Slika 47. Temperaturni profil stijenke prilikom ubrzanog vrućeg starta....................... 69
Slika 48. Temperaturna naprezanja u stijenci kolektora prilikom ubrzanog vrućeg starta ... 69
Slika 49. Ukupna naprezanja u stijenci kolektora prilikom ubrzanog vrućeg starta 70
Slika 50. Razlike dopuštenog i izračunatog naprezanja prilikom ubrzanog vrućeg starta ... 71
Slika 51. Zaliha naprezanja za stijenku kolektora prilikom ubrzanog vrućeg starta 71
Slika 52. Odziv tlaka za poremećaj otvaranja turbinskog ventila... 72
Slika 53. Odziv temperature pare za poremećaj otvaranja turbinskog ventila 73
Slika 54. Odziv temperature slojeva stijenke za poremećaj otvaranja turbinskog ventila ... 73
Slika 55. Temperaturna naprezanja stijenke za poremećaj otvaranja turbinskog ventila 74
Slika 56. Ukupna naprezanja stijenke za poremećaj otvaranja turbinskog ventila........... 74
Slika 57. Razlike dozvoljenih naprezanja i ukupnih naprezanja 75
POPIS TABLICA

Tablica 1. Svojstva čelika 10CrMo910 ... 41
POPIS TEHNIČKE DOKUMENTACIJE

001 Izlazni kolektor pregrijača pare
POPIS OZNAKA

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>m^2</td>
<td>površina</td>
</tr>
<tr>
<td>D</td>
<td>m</td>
<td>promjer cijevi</td>
</tr>
<tr>
<td>V_m</td>
<td>m^3</td>
<td>materijalni volumen</td>
</tr>
<tr>
<td>A_m</td>
<td>m^2</td>
<td>materijalna površina</td>
</tr>
<tr>
<td>ρ</td>
<td>kg/m^3</td>
<td>gustoća</td>
</tr>
<tr>
<td>t</td>
<td>s</td>
<td>vrijeme</td>
</tr>
<tr>
<td>v</td>
<td>m/s</td>
<td>brzina</td>
</tr>
<tr>
<td>φ</td>
<td>/m^3</td>
<td>volumenska gustoća fizikalne veličine</td>
</tr>
<tr>
<td>V</td>
<td>m^4</td>
<td>volumen</td>
</tr>
<tr>
<td>m</td>
<td>kg/s</td>
<td>maseni protok</td>
</tr>
<tr>
<td>p</td>
<td>Pa</td>
<td>tlak</td>
</tr>
<tr>
<td>σ</td>
<td>Pa</td>
<td>naprezanje</td>
</tr>
<tr>
<td>Δt</td>
<td>s</td>
<td>vremenski korak</td>
</tr>
<tr>
<td>g</td>
<td>m/s^2</td>
<td>ubrzanje zemljine sile teže</td>
</tr>
<tr>
<td>μ</td>
<td>Pa⋅s</td>
<td>dinamička viskoznost</td>
</tr>
<tr>
<td>Δz</td>
<td>m</td>
<td>prostorni korak</td>
</tr>
<tr>
<td>C_f</td>
<td>-</td>
<td>koeficijent trenja u cijevi</td>
</tr>
<tr>
<td>S_{p}</td>
<td>/m^3t</td>
<td>izvor/ponor fizikalne veličine</td>
</tr>
<tr>
<td>h_{tot}</td>
<td>J/kg</td>
<td>totalna specifična entalpija</td>
</tr>
<tr>
<td>h</td>
<td>J/kg</td>
<td>specifična entalpija</td>
</tr>
<tr>
<td>e_p</td>
<td>J/kg</td>
<td>potencijalna energija</td>
</tr>
<tr>
<td>q</td>
<td>W/m^2</td>
<td>gustoća toplinskog toka</td>
</tr>
<tr>
<td>α</td>
<td>W/m^2K</td>
<td>koeficijent prijelaza topline</td>
</tr>
<tr>
<td>λ</td>
<td>W/mK</td>
<td>koeficijent toplinske provodljivosti</td>
</tr>
<tr>
<td>c</td>
<td>J/kgK</td>
<td>specifični toplinski kapacitet</td>
</tr>
<tr>
<td>δ</td>
<td>m</td>
<td>debljina sloja plašta</td>
</tr>
<tr>
<td>β</td>
<td>K^{-1}</td>
<td>koeficijent toplinskog istezanja</td>
</tr>
<tr>
<td>E</td>
<td>Pa</td>
<td>Youngov modul elastičnosti</td>
</tr>
<tr>
<td>ν</td>
<td>-</td>
<td>Poissonov broj</td>
</tr>
<tr>
<td>θ</td>
<td>K</td>
<td>temperatura</td>
</tr>
<tr>
<td>s</td>
<td>m</td>
<td>debljina stijenke</td>
</tr>
<tr>
<td>Φ</td>
<td>W</td>
<td>toplinski tok</td>
</tr>
</tbody>
</table>
SAŽETAK

U radu je izveden matematički model termohidrauličkih procesa u vodenoparnom dijelu termoenergetskog postrojenja. Na temelju pojednostavljenog modela provođenja topline procijenjena su temperaturna naprezanja u plaštu stijenke izlaznog kolektora pregrijaca pare. Na temelju izvedenih matematičkih modela provedene su simulacije promjene opterećenja termoenergetskog bloka snage 210 MW s ciljem dobivanja okvirnih vrijednosti temperaturnih i ukupnih naprezanja u stijenci kolektora. Provedene su i simulacije ubrzanih promjena, kako bi se utvrdile veličine i utjecaj temperaturnih naprezanja. Svrha takvih simulacija bila je ispitati postoje li mogućnosti za povećanje brzina promjene zadane vrijednosti temperatura.
1. UVOD

Termoenergetska postrojenja još uvijek imaju iznimnu važnost u proizvodnji električne energije. Veliki udio (oko 60% ne računajući nuklearne elektrane) proizvedene električne energije u svijetu dolazi upravo iz termoenergetskih blokova. Dosadašnji razvoj termoenergetskih postrojenja temeljio se na izgradnji jedinica kojima je osnovni zadatak pogon u što većem broju sati u godini. Uvjeti tržišnog poslovanja nametali su i kontinuirana poboljšanja efikasnosti postrojenja kako bi se održala njihova kompetitivnost na tržištu. Takva postrojenja najčešće nisu fleksibilna u pogledu isključivanja i upuštanja u pogon te su sukladno tome imala odgovarajuću ulogu u elektroenergetskom sustavu.

U novije vrijeme sve više na značaju dobivaju obnovljivi izvori energije. Jedna od osnovnih karakteristika proizvodnje električne energije iz obnovljivih izvora energije je njihova intermitentnost. Budući da se zasnivaju na korištenju energije iz prirodnih fenomena kojima se često mijenja intenzitet (vjetar i sunce), električna energija proizvedena na taj način često nije dostupna onda kada za nju postoje potrebe te se tada potrebno osloniti na konvencionalna postrojenja za proizvodnju električne energije.

Kako se povećava udio obnovljivih izvora u ukupnoj proizvodnji električne energije, termoenergetska postrojenja sve više rade u nenazivnim pogonskim režimima. Isključivanja, brza upuštanja u pogon i nagle promjene opterećenja posljedice su takvih novih uvjeta u elektroenergetskim sustavima. Termoenergetska postrojenja na fosilna goriva sve se više koriste za pokrivanje takvih opterećenja, a nuklearne elektrane ostaju bazne, zbog svoje specifične izvedbe. Dosadašnja postrojenja nemaju veliku fleksibilnost u pogledu pokretanja cijelog postrojenja pa je rad postrojenja nužan čak i kada turbina nije sinkronizirana na mrežu. Takav rad nije ekonomičan, budući da se troši gorivo, a ne proizvodi električna energija za mrežu.

S obzirom na sve navedeno, zaključak je da se na termoenergetski blok postavljaju suprotstavljeni zahtjevi. Preduvjet za visoku termodinamičku efikasnost su visoke temperature i tlakovi pare. Posljedično, materijali kritičnih komponenti moraju svojim svojstvima i geometrijom pratiti sve veće parametre pare. Debljine stijenke pojedinih
komponenti se povećavaju, kako bi izdržale sve veća tlačna opterećenja. Kako bi termoenergetski blok mogao izvršavati brze promjene opterećenja i upuštanja u pogon, osnovnu prepreku predstavljaju dinamičke karakteristike bloka. Naglim promjenama parametara pare dolazi do naglih promjena temperatura komponenata postrojenja. Svojstva i geometrija materijala koji se koriste imaju presudnu ulogu.

Komponente koje su visokoopterećene izrađuju se od čelika s visokim udjelom kroma. Posljedica toga su slabiji koeficijenti provođenja topline kroz stijenku komponente. Tijekom brzih promjena temperature pare pojavljuje se nejednolika progrijanost komponenata u generatoru pare. Uzvrsi u obzir navedenu tvrdnju o nižim vrijednostima koeficijenata provođenja topline, posljedično se javljaju veće nejednolikosti u temperaturnim profilima stijenke određene komponente. Pri povišenim temperaturama materijal se širi, a budući da su različiti dijelovi stijenke na različitim temperaturama, širenje je nejednoliko, što uzrokuje naprezanja. Veće temperaturne nejednolikosti uzrokuju i veća temperaturna naprezanja u materijalu.

Potrebno je obratiti i pažnju na učestalost pojave takvih naprezanja, budući da može doći do pojave umora i puzanja materijala, što dovodi do oštećenja komponenata i uzrokuje financijske gubitke. Naprezanja koja se javljaju u prijelaznim stanjima potrebno je držati pod kontrolom, kako se ne bi dogodilo prekoračenje dozvoljenih naprezanja u nekom trenutku. Isto tako, u skladu s navedenim zahtjevima koji se postavljaju na termoenergetske blokove o čestim i brzim promjenama opterećenja, potrebno je voditi termoenergetski blok na način da se maksimalno iskorištavaju rezerve materijala, kako bi promjene bile što brže.

Postoje velike potrebe za smanjenjem troškova upuštanja u pogon i isključivanja iz pogona termoenergetskih postrojenja. Osnovni razlozi za to su novi uvjeti postavljeni od strane dereguliranog tržišta električne energije gdje su učestalija i kraća vremena za uključivanje ili isključivanje postrojenja potrebna kako bi se zadovoljili kratkoročna proizvodnja električne energije po nalogu dispečera. Daljnji razlozi za takve promjene uključuju uštede na gorivu, uštede energije pomoćnih sustava, a dodatno se povećava ekološka prihvatljivost postrojenja zbog smanjenja ukupnih emisija.
Osnovni ograničavajući faktor u razmatranju brzih upuštanja u pogon su maksimalna dozvoljena temperaturna naprezanja u debelostijenim komponentama, kao što su kolektori pregrijača, bubanj i rotor parne turbine. Bilo kakvo prekoračenje takvih ograničenja smanjuje životni vijek zahvaćenih komponenti. Zbog navedenih razloga, u postrojenjima se primjenjuju invazivni i neinvazivni senzori koji rade s pripadajućom programskom podrškom za procjenu temperaturnih naprezanja.
2. POGON TERMOENERGETSKOG BLOKA

Najveći dio svog životnog vijeka termoenergetski blokovi provode u stacionarnom režimu rada, pa su iz tog razloga parametri stacionarnog pogona najvažniji za određivanje karakteristika bloka.

Općenito se zahtjevi za pogon termoenergetskog bloka mogu podijeliti na:

- ekonomske zahtjeve – što je moguće niža cijena proizvedene električne energije, a pri tome se uzimaju u obzir investicijski troškovi, troškovi održavanja i pogonski troškovi;
- zahtjeve elektroenergetskog sustava – promjene snage bloka moraju biti u stanju pratiti zahtjeve u svrhu sudjelovanja u regulaciji frekvencije i razdiobe djelatne električne snage i mreži;
- ekološke zahtjevi – što manji štetni utjecaj na okoliš, odnosno štetni utjecaj u propisanim granicama;

Mogućnost ispunjavanja ekoloških i ekonomskih zahtjeva prvenstveno ovisi o karakteristikama postrojenja u stacionarnom pogonu. Ispunjavanje zahtjeva elektroenergetskog sustava ovisi o dinamičkim karakteristikama postrojenja [1].

2.1. Pogonski režimi termoenergetskog bloka

2.1.1. Stacionarni pogon bloka

Stacionarni uvjeti pogona termoenergetskog bloka podrazumijevaju rad u kojemu se radni parametri ne mijenjaju u vremenu. Snaga termoenergetskog bloka jednaka je toplinskom toku od strane goriva umanjenom za sve toplinske i mehaničke gubitke. Ne postoji akumulacija energije u komponentama. Efikasnost termoenergetskog bloka izražena je odnosom električne energije koja se predaje u elektroenergetski sustav u jedinici vremena i utrošene primarne energije koja se gorivom unosi u proces.

Pretvorba toplinske energije u električnu odvija se s određenim gubicima. Maksimalni teoretski iznos efikasnosti ograničen je s termodinamičkim stupnjem
djelovanja idealnog Carnot-ovog procesa. Termodinamička efikasnost je veća, što je niža temperatura hladnog dijela procesa i što je viša temperatura vrućeg dijela procesa. Ukupni energetski gubici značajno su veći od teoretskih gubitaka topline zbog kružnog procesa. Osim generatora pare, gubici se pojavljuju i zbog nesavršenih profila turbinskih lopatica i vlastite potrošnje energije. Općeniti tehnički razvoj svih dijelova termoenergetskog bloka utječe na povećanje efikasnosti cijelog procesa.

Stupanj iskoristivosti (efikasnost) termoenergetskih blokova posljednjih se desetljeća znatno povećao. Jednim djelom radilo se na konstrukcijskim poboljšanjima, a drugim djelom na povećanju parametara pare. Dijagram koji daje predodžbu o povećanju efikasnosti u ovisnosti o temperaturi svježe pare prikazan je na slici 1.

![Dijagram povećanja efikasnosti vodeno-parnih procesa](image.png)

Slika 1. Povećanje efikasnosti vodeno-parnih procesa [1]

2.1.2. **Nestacionarni pogon bloka**

Za razliku od stacionarnog pogona termoenergetskog bloka, u nestacionarnom režimu radni parametri se mijenjaju. Energetski tokovi od strane goriva i na strani radnog medija nisu jednaki, te se odvija akumulacija energije u raznim dijelovima bloka.
Temperature stijenke se mijenjaju u ovisnosti o veličini toplinskih tokova s vanjske, odnosno s unutarnje strane stijenke. Osim energetskih veličina, pojavljuje se i akumulacija mase u vodenoparnom traktu.

Proces akumulacije može se odvijati na dva načina, a o tome ovise i posljedice. Pohrana energije javlja se u slučaju kada su ulazni energetski tokovi veći od izlaznih, a energetska razina procesa se povećava. Oslabdanje energije javlja se u slučaju kada su ulazni energetski tokovi manji od izlaznih energetskih tokova, a energetska razina procesa se snižava. Električna snaga koju termoenergetski blok predaje u elektroenergetski sustav tijekom nestacionarnog pogona ne ovisi samo o opterećenju bloku u određenom trenutku, već i o energetskim tokovima koji uzrokuju pohranu ili oslobađanje energije. Ishoristavanje takvih pojava omogućuje postizanje različitih dinamičkih performansi bloka odabirom odgovarajuće strategije vođenja.

Promjena snage bloka na temeljnoj se razini odvija preko promjene dotoka goriva u ložište. Na taj način, preko nestacionarnog pogona bloka postiže se u određenom vremenu stacionarni stanje.

Općenito, svaka promjena opterećenja termoenergetskog bloka uzrokuje štetu na materijalima, bez obzira na način vođenja te promjene. Navodi se da je oko 60% do 80% svih kvarova u termoelektranama na neki način povezano s promjenama opterećenja [2].

2.1.2.1. Promjena opterećenja

Termoenergetski blokovi na ugljen mogu se značajno razlikovati prema brzini kojom se može mijenjati električna snaga. Zajednička značajka postrojenja na ugljen jest slabija mogućnost odaziva na promjenu snage pri opterećenjima bližim tehničkom minimumu.

Općenito, postrojenja koja rade s nadkritičnim parametrima tlaka mogu ostvarivati promjenu snage od 7% po minuti, dok je ta veličina kod postrojenja s podkritičnim parametrima oko 3% po minuti [3]. Veća vrijednost brzine promjene snage omogućuje bolje praćenje zadanog opterećenja nametnutog od strane elektroenergetskog sustava.
Vrijednosti brzine promjene snage odnose se na područje opterećenja bloka od 50% do 100%.

Pritvaranje (ili otvaranje) turbinskog ventila najčešće je primjenjivana metoda promjene snage turbine. Prilikom procesa povećanja snage, energija pohranjena u generatoru pare oslobađa se kako bi se privremeno povećala izlazna snaga turbine. Takvu metodu moguće je primjenjivati u situacijama pogona s konstantnim tlakom svježe pare, budući da je tada turbinski ventil djelomično otvoren. Otvaranje ventila uzrokuje privremeno povećanje masenog protoka pare, što dovodi do povećanja snage. Za trajno povećanje snage, potrebno je pratiti otvaranje ventila s povećanjem protoka goriva. Kod pogona s kliznim tlakom ne može se na taj način ostvarivati privremeno povećanje snage, budući da su turbinski ventil potpuno otvoreni.

Drugi način privremenog povećanja snage bloka je podešavanje oduzimanja pare iz visokotlačnih i niskotlačnih stupnjeva turbine. Kao što je već navedeno, svrha oduzimanja pare iz turbine je predgrijavanje napojne vode prije ulaska u generator pare s ciljem povećanja efikasnosti postrojenja. Privremeno povećanje snage može se postići zatvaranjem ventila koji reguliraju oduzimanja pare. Na taj način gubi se efikasnost procesa, međutim ostvaruje se „višak“ pare koji prolazi kroz turbinu i posljedično snaga raste.

Zajednička karakteristika obje navedene metode je povećanje protoka protوكa kroz turbinu. Razlikuju se prema vremenu u kojem se ostvaruje privremeno povećanje snage. Kod zahvata promjene položaja turbinskog ventila pare, vrijeme za povećanje snage mjeri se u sekundama, dok se kod metode obustave oduzimanja vrijeme mjeri u minutama.

Veliku ulogu igra sustav vođenja pogona. Metode promjene snage (promjena protoka goriva, promjena položaja turbinskog ventila i obustava oduzimanja pare) optimizirane su odgovarajućom automatskom regulacijom. Prema izvoru [3], ugradnja opreme za nadzor i automatizirane regulacije može značajno je povećala sposobnost termoenergetskog bloka da prati nametnuto povećanje izlazne snage. Navodi se primjer o povećanju brzine snage za 300%, što pokazuje da odgovarajuća softverska i hardverska podrška može imati veliki utjecaj na dinamičke performanse termoenergetskog bloka.
2.1.2.2. Minimalna snaga

Jedna od važnijih karakteristika termoenergetskog bloka je rad sa minimalnom snagom. Minimalna snaga, odnosno tehnički minimum definira se kao najmanja snaga pri kojoj je moguć siguran i pouzdan rad termoenergetskog bloka bez primjene nadomjesnih loženja. Za termoelektrane na ugljen, tehnički minimumi snage kreću se u rasponu od 35-40% [3]. Niska vrijednost minimalne snage omogućava veću fleksibilnost termoenergetskog u smislu da nije nužno njegovo isključivanje, ako je potreba za proizvodnjom električne energije mala. Isključivanje bloka je puno neprihvatljivije, budući da ponovno uključivanje zahtjeva provođenje složenijih radnji, što je vremenski i ekonomski nepovoljno.

Rad pri niskom opterećenju postrojenja na ugljen popraćen je s nekoliko negativnih posljedica. Posljedice uključuju lošiju regulaciju snage, teži nadzor nad ekološkim značajkama postrojenja i manju efikasnost. Pri nižim opterećenjima moguće su pojave nestabilnosti plamena u ložištu, što zahtjeva nadomjesno loženje.

S obzirom da u elektroenergetskim sustavima ima sve više postrojenja koja koriste intermitentne obnovljive izvore energije (s naglaskom na vjetar), tehničkim minimum postrojenja postaje vrlo važan i nameće se pomicanje granica s trenutnih 40% na 20% [4], kako bi se maksimirao efekt korištenja obnovljivih izvora energije.

Može se pokazati na primjeru stanje u elektroenergetskom sustavu s većim udjelom instaliranih obnovljivih izvora energije. Prikazani dijagram na slici 2 predstavlja predviđenu situaciju u sustavu Velike Britanije za 2030. godinu, gdje vjetroelektrane imaju značajan udio u proizvodnji električne energije.
Kako je prikazano na dijagramu, kod vjetroelektrana se naglo mijenja snaga kroz period od mjesec dana, a ovisi naravno o količini vjetra. Ukoliko se maksimalno želi iskoristiti energija vjetra, moraju se termoelektrane prilagoditi vjetroelektranama. Kao što se vidi, kroz navedeni vremenski period, česte su promjene opterećenja termoelektrana svih tipova. Iako danas situacija još uvijek nije takva, ovo je vrlo vjerojatan scenarij za idućih dvadesetak godina. Kao dodatni faktor pojavljuje se cijena električne energije koja varira od vrlo visokih do vrlo niskih, pa čak i negativnih cijena u slučaju prevelike količine električne energije proizvedene iz vjetroelektrana.
2.1.2.3. Uključivanja i isključivanja iz pogona

Uključivanja i isključivanja iz pogona termoenergetskog bloka zahtijevaju posebnu pažnju, budući da lako može doći da težih materijalnih i ekonomskih oštećenja. Općenito, termoenergetski blokovi na ugljen rijetko se isključuju iz pogona u potpunosti. Da bi se izbjegle neželjene posljedice, propisuju se za određeno postrojenje minimalna vremena koja pogon mora provesti u radu, kao i minimalna vremena držanja pogona isključenim, kako bi se ostvarila toplinska ravnoteža.

Vrijeme potrebno za pokretanje postrojenja također se mora propisati, a ovisno je o toplinskom stanju njegovih kritičnih komponenata. Postrojenja koja su isključena iz pogona mogu se ponovno pokretati tek nakon što je prošlo dovoljno vremena u isključenom stanju. Što je duže vrijeme proteklo od isključivanja postrojenja, komponente su sve hladnije i potrebno je duže vremena za njihovo ponovno zagrijavanje.

Slika 3. Promjene opterećenja kao uzrok oštećenja materijala [2]

Slika 3 pokazuje da velike promjene opterećenja (upuštanja u pogon) imaju najveći utjecaj na oštećenja materijala. Što je veća razlika između početnog i krajnjeg toplinskog stanja, posljedice su veće. Iako promjene opterećenja u radu (OPT1-OPT3 na slici) imaju pojedinačno manji utjecaj na oštećenja od pokretanja (hladni, topli ili vrući start), njihov zbroj tijekom životnog vijeka prelazi oštećenja uzrokovana startovima [2].
Iako je za termoenergetske blokove najbolje da rade konstantno, to ipak nije moguće zbog načina trošenja električne energije. Potrošnja je tijekom dana puno veća u odnosu na noć, pa postoji takozvani pogon u dvije smijene. Preko dana termoenergetski blokovi rade, zbog toga što je potrošnja najveća, a preko noći se isključuju iz pogona zbog premale potrošnje električne energije.

Jedno od rješenja koja se primjenjuju u termoenergetskim blokovima je mimovodni ventil koji omogućuje brže promjene pogonskog stanja. Obilazni ventil omogućava razdvajanje toka pare od turbine, odvodeći proizvedenu paru u kondenzator. Na taj način se omogućava neovisna promjena temperature pare u generatoru pare i protok pare kroz turbine. Koristeći obilazni ventil, postrojenje se može držati u stanju pripravnosti i vrlo brzo uključiti. Jedna od prednosti korištenja obilaznog ventila leži u činjenici da je turbina vrlo osjetljiva na temperaturna naprezanja, a koja se mogu lako držati pod kontrolom koristeći obilazni ventil.

Broj uključivanja i isključivanja iz pogona termoenergetskog bloka ima značajan utjecaj na pogonske troškove i troškove održavanja.
3. OPIS PROCESA

Termoenergetski blokovi najzastupljenija su postrojenja za proizvodnju električne energije. S obzirom na vrstu goriva, takva postrojenja mogu koristiti fosilna goriva, nuklearno gorivo, ili neke obnovljive izvore energije. Koncentrirajući se na termoenergetske blokove na fosilna goriva, u daljnjem tekstu bit će napisano nešto više o takvim postrojenjima.

Izvor toplinske energije u termoeneretskim postrojenjima na fosilna goriva predstavlja kemijska energije koja je bila pohranjena u gorivu, koja se zatim oslobađa izgaranjem. Postoje postrojenja na sve tipove fosilnih goriva (plin, nafta i ugljen), međutim najzastupljenija postrojenja su ona s ugljenom (otprilike 65%), a u zadnje vrijeme sve više na značaju dobiva plin (30%).

Osnovni princip rada je taj da se na osnovnu dovedene topline, koja je oslobodena izgaranjem fosilnog goriva, proizvodi korisni mehanički rad koji se dalje koristi za pogon električnog generatora. Nije moguće pretvoriti svu toplinu u mehanički rad, pa stoga postrojenja rade s određenom efikasnošću, koja među ostalima ovisi o načinu vođenja procesa.

Iako svi termoenergetski blokovi imaju načelno istu strukturu, njihove izvedbe značajno se razlikuju. Na slici 4 prikazana je pojednostavljena shema termoenergetskog bloka s međupregrijanjem pare.
Slika 4. Pojednostavljena shema termoenergetskog bloka

Središnji dio postrojenja čini generator pare, u kojem se ulazna napojna voda (kapljevina) zagrijava, te eventualno isparava i pregrijava do pogodne temperature prije ulaska u turbinu. Takvi termoenergetski blokovi na fosilna goriva izvode se s pregrijačem, a najčešće i s jednim međupregijanjem pare. Prije ulaska u generator pare, kondenzat koji je nastao hlađenjem u kondenzatoru mora se pomoću napojne pumpe podići na tlak generatora pare. Tlak u kondenzatoru je redovito manji od okolišnjeg tlaka (potlak), a ograničen je temperaturom rashladnog spremnika, koji je najčešće voda.

Na putu između kondenzatora i generatora pare, nalaze se osim napojne pumpe zagrijači i otplinjač i kondenzatorska pumpa. Uloga zagrijača je povećanje efikasnosti procesa, a osim toga povećanje temperature napojne vode na ulazu u generator pare smanjuje temperaturni šok koji se može pojaviti u slučaju da u generator pare ulazi hladna napojna voda. Osim toga, sprečava se i pojava niskotemperaturne korozije u generatoru pare. Zagrijači vode općenito se mogu podijeliti na niskotlačne (NT) i visokotlačne (VT). Za zagrijavanje napojne vode u zagrijačima koristi se para koja se reguliranim oduzimanjima odvodi iz turbinskih stupnjeva. Broj zagrijača ovisi o postrojenju, a povećanje njihovog broja povećava efikasnost postrojenja. Utjecaj zagrijača na povećanje
efikasnosti se sve više smanjuje s povećanjem njihovog broja, pa se pojavljuje ograničenje s obzirom na trošak investicije u takve zagrijače.

Osim isparavanja, kao što je već navedeno, postoji i pregrijanje pare. Time se povećava termodinamička efikasnost procesa. Veće pregrijanje pare utječe na povećanje efikasnosti, a ograničenje u povećanju temperature predstavlja kvaliteta materijala koji se koristi u generatoru pare i turbini. S razvojem novih i boljih materijala, s vremenom se povećavaju i temperature svježe pregrijane pare koja u ulazi u turbinu, što dovodi do konstantnog poboljšanja efikasnosti modernih postrojenja.

3.1. Generator pare

Generator pare termoenergetskog postrojenja složeni je uređaj u kojem se odvija energetska pretvorba pohranjene kemijske energije goriva u toplinsku energiju. Tipovi generatora pare koji se primjenjuju određeni su vrstom postrojenja u kojem se koriste i razdoblju kada su proizvedeni. Matematički model koji će kasnije biti izveđen odnosi se na protočni generator pare. Shema protočnog generatora pare prikazana je na slici 5.

![Slika 5. Protočni generator pare](image-url)
Dimni plinovi protječu s vanjske strane cijevi u generatoru pare i postupno predaju toplinu cijevima vodenoparnog trakta. U ložištu su temperature dimnih plinova najveće, a toplina se najvećim dijelom prenosi zračenjem u tom dijelu. S obzirom na mehanizme i intenzitet prijenosa topline na strani vode i vodene pare, generatori pare su tako konfigurirani da zone s najvećim temperaturama dimnih plinova predaju toplinu isparivaču. Nakon prolaska isparivačke zone, dimnih plinovi predaju toplinu pregrijačima. Ostatak osjetne topline iskorištava se za zagrijavanje napojne vode (ekonomajzerski dio) i na taj način povećava efikasnost cijelog procesa. Dimni plinovi izlaze u okolinu s temperaturom većom od temperature okolišnjeg zraka.

Između pregrijača pare potrebno je regulirati temperaturu pare. Iz tog razloga se između pregrijača nalazi hladnjak preko kojeg se dodaju rashladna voda na odgovarajućem tlaku. Prekoračenje dozvoljenih temperatura materijala generatora pare i turbine djeluje nepovoljno na vijek trajanja dotičnih dijelova.

3.2. **Regulacijski sustav termoenergetskog bloka**

Ključnu ulogu u promjeni snage bloka ima regulacijski sustav. Pomoću regulacijskog sustava reguliraju se sve ostale pogonske veličine koje su nužne za normalno funkcioniranje procesa. Neke od tih veličina su protok zraka za izgaranje, protok napojne vode, temperatura svježi i međupregrijane pare. Pravilan rad regulacijskog sustava podrazumijeva se i u potpunosti je nužan za odvijanje tehnološkog procesa.

Kao objekt regulacije, termoenergetski blok predstavlja nelinearni dinamički sustav s distribuiranim parametrima. Veliki je broj reguliranih veličina koje su dinamički povezane. Uslijed brojnih tehnoloških ograničenja nameću se uske granice dozvoljenih promjena reguliranih veličina. S time se ograničava brzina djelovanja pojedinih izvršnih organa.

Regulacija temperature svježe pare od izuzetne je važnosti, budući da temperatura utječe na efikasnost procesa, a u isto vrijeme prekoračenje dozvoljenih vrijednosti utječe na skraćenje životnog vijeka materijala.
U svrhu vođenja bloka na što ekonomičniji način potrebno je optimirati odnos između povoljnih dinamičkih karakteristika i skraćivanja životnog vijeka kritičnih komponenti. O kvaliteti primijenjenog rješenja regulacijskog sustava ovisi fleksibilnost, iskoristivost i ukupna raspoloživost postrojenja. Iznad određenih temperatura materijalima naglo padaju mehanička svojstva, te je potrebno radnu temperaturu držati niže od te granice, ali što bliže kako bi se maksimalno iskoristio termodinamički proces. Kvalitetna i točna regulacija omogućava držanje vrijednosti temperature pare bliže granicama izdržljivosti materijala bez straha od narušavanja pogonske sigurnosti termoenergetskog bloka. Ukupna iskoristivost postrojenja je tada najveća.

Na isti način, kvalitetna regulacija povećava fleksibilnost bloka te omogućava brže slijeđenje zahtjeva za promjenom opterećenja i smanjuje se vjerojatnost prisilnog ispadanja postrojenja. Time je povećana i ukupna raspoloživost postrojenja [7].

Regulacija temperature pare može se provoditi na vodenoparnoj i na dimozračnoj strani. Zahvati koji se primjenjuju na dimozračnoj strani zasnivaju se na promjeni protoka i temperature dimnih plinova. Temperatura dimnih plinova na ulazu u pregrijački dio može se regulirati nagibom goriva (burner tilt).

Protočna količina dimnih plinova može se regulirati recirkulacijom. Nakon pregrijačkog dijela, određeni dio dimnih plinova vraća se u pregrijački dio, a zatim se miješa s glavnim tokom dimnih plinova. Za takve svrhe primjenjuje se ventilator kojim se određenom broju okretaja mijenja protok dimnih plinova koje potiskuje.

Na vodenoparnoj strani zahvati za regulaciju temperature svode se u većini slučajeva na ubrizgavanje rashladne vode u paru. Dio u kojem se obavlja takav proces naziva se hladnjak pare. Promjenom količine ubrizgane rashladne vode regulira se temperatura. Proces se temelji na miješanju medija u kojem rashladni medij isparava. Isparavanjem rashladne vode troši se velika količina topline, koja se dobiva na račun snižavanja temperature pare. Izvršni organ pomoću kojeg se odvija regulacija ubrizgavanjem vode je ventil.
4. MATERIJALI

Parametri radnog medija u generatoru pare s razvojem novih postrojenja postaju sve veći (temperatura i tlak), što dovodi do većeg opterećenja na materijale koji se koriste u generatorima pare i ostalim komponentama.

Materijali koji su opterećeni u takvim pogonskim uvjetima nužno moraju zadovoljavati određene zahtjeve koji se na njih postavljaju.

4.1. Čvrstoća

Budući da su materijali termoenergetskih postrojenja izloženi visokim tlakovima i vrlo visokim temperaturama, posljedica je bitno drukčije ponašanje materijala nego u slučaju hladnih ili manje vrućih (do 350 °C) komponenta postrojenja. Mijenjaju se određene zakonitosti u odnosu na niske temperature. Naprezanje i istezanje nisu vremenski neovisni. Isto tako, gubi se proporcionalnost i reverzibilnost po Hookovom zakonu. Materijali koji rade pri vrlo visokim temperaturama podložni su puzanju. To znači da se pod trajnim opterećenjem elementi koji su izloženi puzanju deformiraju sve više u ovisnosti o vremenu.

Mehanička svojstva materijala mijenjaju se pri višim temperaturama. Granica tečenja se smanjuje, kao i vlačna čvrstoća i model elastičnosti, a povećava se istezljivost i duktilnost. Osim mehaničkih zahtjeva, materijali moraju zadovoljiti i zahtjev kemijske postojanosti na visokim temperaturama, otporni na djelovanje vatre i agresivnih plinova te otporni na oksidaciju.

Ovisnost vlačne čvrstoće materijala o promjeni temperature ne može se izraziti kvantitativno, ali približno se može izraziti kako je prikazano dijagramom na slici 6.

4.2. Procjena životnog vijeka materijala

Budući da materijali u termoenergetskim blokovima rade pri sve većim temperaturama i sve bliže dozvoljenim granicama, glavni mehanizmi loma koji se pojavljuju su umor i puzanje. Osim visokih temperatura, materijali su izloženi visokim tlakovima i korozivnom djelovanju medija.

Za rad pri visokim temperaturama danas se uglavnom primjenjuju CroMo čelici. Udjeli pojedinih legirnih elemenata odabiru se prema zahtjevima na čvrstoću, otpornost koroziji pri visokim temperaturama i tehnologičnosti.

Umor i puzanja materijala, kao što je već navedene, najčešći su uzroci loma materijala koji rade pri visokim temperaturama i opterećenjima. Umor materijala uzrokovan je visokim opterećenjem i cikličkim naprezanjima. Pojava umora materijala ovisi o intenzitetu promjena naprezanja, a povećanje temperature skraćuje broj ciklusa do
pojave loma. Utjecaj ima i stanje površine materijala. Površinski zarezi i oštećenja smanjuju otpornost na pojavu umora.

Nije dovoljno poznivati samo posljedice svakog od navedenih dominantnih mehanizama uzroka loma zasebno. Zajednički efekt umora i puzanja materijala potencira se i dovodi do još većeg skraćivanja životnog vijeka. Iako su materijali koji se primjenjuju u termoenergetskim blokovima (feritni čelici) visoko otporni na puzanje i umor zasebno, kombinirani efekt znatno smanjuje tu izdržljivost. Prelaskom pola životnog vijeka materijala s obzirom na puzanje drastično smanjuje i otpornost na umor (čak za 90%) [3]. Takav efekt naročito dolazi do izražaja u starijim postrojenjima koja su dugo vremena provela u pogonu. Slaba otpornost na dinamička naprezanja u takvim postrojenjima čini ih posebno osjetljivima.

Dinamička naprezanja, osim direktnih oštećenja mogu prouzročiti degradaciju materijala u smislu toplinskih svojstava. Posebno su osjetljivi izmjenjivači topline kod kojih se degradira sposobnost provođenja topline, smanjujući tako efikasnost cijelog procesa.

4.3. Temperaturna naprezanja

Temperaturna naprezanja u debelostijenim komponentama generatora pare značajna su za razmatranje zbog njihovog eventualnog utjecaja na oštećivanje materijala. Pojava takvih naprezanja može imati značajan utjecaj na skraćenje životnog vijeka zahvaćenih komponenti u odnosu na projektni. Naprezanja koja su izazvana tlakom pare i montažna naprezanja mogu se odgovarajućim dimenzioniranjem svih dijelova sa sigurnošću održati ispod zadanih granica, za zadani životni vijek. Temperaturna naprezanja ovise o brzinama promjene temperature radnog medija. Nije uvijek moguće u svim pogonskim uvjetima pouzdano kontrolirati takve promjene i održavati naprezanja unutar projektnih granica. Brzine promjene temperature radnog medija u dijelovima generatora pare ovise o različitim faktorima, a najvažniji su:

- Promjena temperature zbog promjene tlaka u isparivačkom dijelu – temperatura pare (isparavanja) je funkcija tlaka, a velike brzine promjene
tlaka dovode do posljedično velikih promjena temperature isparavanja, odnosno velikih promjena temperature mokre pare u isparivaču;

- Regulacijski sustav – brzine promjene temperature i odstupanja od zadane vrijednosti u nestacionarnim pogonskim uvjetima ovise o strukturi i ugođenosti regulacijskog sustava, pa su moguće pojave odstupanja vrijednosti brzine promjene temperature, unatoč djelovanju regulatora [1]

Temperaturno polje unutar stijenke uvjetovano je promjenom temperature radnog medija koji oplahuje stijenku. Uslijed prostornih gradijenata u materijalu javljaju se temperaturna naprezanja, koja su funkcija oblika temperaturnog polja u promatranom trenutku. Općenito, temperaturno polje unutar materijala je trodimenzionalno, a oblik ovisi osim o temperaturi radnog medija i o geometriji stijenke.

Veličina temperaturnih naprezanja proporcionalna je brzini promjene temperature, a raste s kvadratom debljine stijenke. Temperaturna naprezanja superponiraju se naprezanjima izazvanim pogonskim silama. Pogonske sile predstavljaju sile uslijed djelovanja tlaka pare u generatoru pare. U slučaju naglih promjena temperature, javljaju se i velika temperaturna naprezanja koja mogu skratiti životni vijek debelostijenog dijela postrojenja.

4.4. Metode procjene temperaturnih naprezanja

U osnovi se razlikuju dvije metode procjene temperaturnih naprezanja u debelostijenim komponentama termoenergetskog bloka.

Osnovna i starija metoda je mjerenje temperature u različitim točkama stijenke. Ne postoji izravan način mjerenja naprezanja, već se moraju izračunati na temelju temperature stijenke. Teoretski bi trebalo poznavati točan temperaturni profil stijenke kako bi se točno mogla izračunati naprezanja. Budući da je to u praksi nemoguće, temperatura stijenke mora se mjeriti u nekoliko točaka. Temperaturna naprezanja mogu se računati već i sa poznavanjem temperature stijenke u dvije točke. Mjeri se temperatura na unutarnjem rubu stijenke i temperatura u sredini stijenke. Temperaturna naprezanja izračunata na osnovu tih dviju vrijednosti nisu točno, ali mogu se koristiti za analizu.
Uobičajeni postupak je mjerenje dviju temperatura parom termoelemenata. Termoelementi se postavljaju kroz rupe koje su izbušene u stijenici. Kao što je već navedeno, jedan se nalazi uz unutarnji rub, a drugi u sredini stijenke. Termoelementi mogu biti postavljeni na način da su aksijalno razmaknuti (gledano prema osi cijevi) ili zakrenuti za neki kut [7].

Sama konstrukcijska izvedba takvog sustava za mjerenje ima nedostatke. Zbog očuvanja integriteta stijenke, termoelement se mora postaviti dublje u stijenku, umjesto na sam unutarnji rub. Na taj način, ne mjeri se zapravo temperatura ruba, već temperatura na nekoj dubini, što uzrokuje odmak od stvarnih vrijednosti temperature za koju se pretpostavlja da se mjeri. Drugi nedostatak je vremensko kašnjenje. U uvjetima nestacionarnog rada temperature se mogu mijenjati vrlo brzo, a time i naprezanja. Zbog kašnjenja signala, moguća su odstupanja od vrijednosti u promatranom trenutku, budući da mjerenja pokazuju stanje iz nekog prošlog trenutka. Daljnji nedostaci su povećani troškovi za održavanje instrumentacije i oslabljivanje stijenke bušenjem rupa za termoelemente.

U današnje vrijeme sve se više koriste on-line modeli za proračunavanje temperaturnih profila stijenke i izračun naprezanja. Matematički modeli pružaju vjerodostojniji uvid u stvarne temperature unutar stijenke od mjerenja u nekoliko točaka, kao što je navedeno prije.

Kao što je već napomenuto, temperaturna naprezanja u debelostijenim komponentama za vrijeme prijelaznih pojava nastoje se držati što bliže maksimalnom dozvoljenom naprezanju u svrhu postizanja što veće ekonomičnosti. Poznavanje ovisnosti temperaturnih naprezanja o dinamici procesa koji se odvija u termoenergetskom bloku omogućuje bolje projektiranje regulacijskog sustava temperature pare.
5. MATEMATIČKI MODEL

 Sljedeći dio teksta odnosi se na razradu matematičkog modela dijela termoenergetskog bloka. U svrhu matematičkog opisa, razmatrani dio termoenergetskog bloka može se podijeliti na vodenoparni trakt, dimozračni kanal i cijevnu stijenku.

5.1. Osnovne značajke matematičkog modela

Vodenoparni trakt općenito obuhvaća komponente postrojenja u kojima protječe voda, koja mijenja svoja toplinska i agregatna stanja, te na taj način izvršava svoju ulogu kao radni medij. S obzirom na ulogu u sustava, komponente vodenoparnog trakta obuhvaćaju izmjenjivače topline, spojne cjevovode i kolektore. Izmjenjivači topline vodenoparnog trakta dalje se dijele na ekonomajzer, isparivač i pregrijače pare.

Temelj za matematički model stlačivog strujanja čine osnovni fizikalni zakoni koji su opisani parcijalnim diferencijalnim nelinearnim diferencijalnim jednadžbama. Kako bi broj jednadžbi i nepoznanica bio usklađen, potrebno je primijeniti dopunske jednadžbe, kao što su jednadžbe za određivanje toplinskih i masenih tokova,. U općenitom slučaju takav sustav nema analitičkog rješenja.

Kako bi sustav bilo moguće numerički rješavati, potrebno je izvršiti prostornu diskretizaciju modela. To znači da će, prostorno gledajući, opisani sustav biti podijeljen na točno određeni broj segmenata (kontrolnih volumena).

5.1.1. Dvofazno strujanje

Problem u kojima se matematički opisuju izmjenjivači topline često uključuju promjenu agregatnog stanja fluida. Isparivači i kondenzatori su takvi izmjenjivači topline i sastavni su dio svakog termoenergetskog postrojenja. S obzirom da je u ovom radu veliku naglasak na matematičkom opisivanju dinamike procesa u isparivaču, koji je središnji dio vodenoparnog trakta, potrebno je nešto više reći o načinu rješavanja problema dvofaznog strujanja.
Istodobno strujanje kapljevine i pare u cijevima isparivača vrlo je teško ili nemoguće opisati fundamentalnim zakonima fizike. U svrhu tehnički primjenjivog matematičkog opisivanja dvofaznog strujanja predlažu se sljedeći pojednostavljeni fizikalni modeli:

- Homogeni model
- Model odvojenih tokova

Homogeni model je najjednostavniji pristup analizi dvofaznog strujanja. Osnovna pretpostavka homogenog modela jesu prosječna svojstva fluida koji struji u svakoj točki promatranog prostora. Brzine kapljevine i parne faze su jednake. Svojstva i veličine stanja dobivaju se interpolacijom svojstava kapljevite i parne faze, uz poznавanje udjela parne faze u kapljevitoj.

Model odvojeni tokova uzima u obzir različite brzine strujanja kapljevite i parne faze. Osnovne jednadžbe očuvanja se u modelu odvojenih tokova mogu pisati odvojeno za svaku fazu, što čini proračun složenijim. Dodatno je potrebno poznavati interakciju između dvije faze, kao i protočni presjek svake faze.

U svrhu razvijanja matematičkog modela strujanja, odabran je homogeni model. Homogeni model može se primijeniti za većinu strujanja, a posebno za sustave u kojima vladaju visoki tlakovi i brzine strujanja, kada se može zanemariti utjecaj relativne brzine između dvije faze.

5.2. Izvod matematičkog modela

U sljedećem djelu teksta bit će pokazane jednadžbe osnovnih zakona u svojim osnovnim oblicima, iz kojih se dalje izvode, uz određena pojednostavljenja, oblici kakvi se koriste za rješavanje konkretnog problema.
5.2.1. Strujanje fluida u cijevi

Izvod jednadžbi koje opisuju strujanje stlačivog fluida u cijevi temelji se na osnovnim fizikalnim zakonima očuvanja. Zakon očuvanja najopćenitije se može zapisati jednadžbom:

\[
\frac{\partial \varphi}{\partial t} + \frac{\partial (\varphi v_j)}{\partial x_j} = S_\varphi
\]

Jednadžba (1) predstavlja osnovni zapisa zakona očuvanja. Varijabla \(\varphi \) predstavlja volumensku gustoću fizikalne veličine, a veličina \(S_\varphi \) ponor ili izvor polja fizikalne veličine \(\varphi \). Navedena tvrdnja odnosi se na točku beskonačno malog materijalnog volumena. Materijalni volumen \(V_m \) sadrži uvijek jedne te iste čestice, a od okoline je odijeljen materijalnom površinom \(A_m \). Kasnije će u izvodu matematičkog modela materijalni volumen biti zamijenjen kontrolnim volumenom koji je fiksiran u prostoru, tj. Koji ne obuhvaća uvijek jedne te iste čestice, već samo one koje se nalaze unutar njegovih granica u nekom trenutku.

Prilikom izvođa matematičkog modela usvojena je pretpostavka kvazijednodimenzijskog strujanja. To znači da je zanemarena promjena veličina po poprečnom presjeku cijevi, a polumjer zakrivljenosti cijevi dovoljno je velik u odnosu na promjer cijevi da se njegov utjecaj može zanemariti.

Slika 7 prikazuje modeliranu cijev, na temelju koje su kasnije izvedene jednadžbe koje čine matematički model.
Slika 7. Cijev vođeno-parnog trakta

Jednadžbe očuvanja mase, količine gibanja i energije bit će diskretizirane implicitno po vremenu s konačnom razlikom točnosti prvog reda. Problem se može pojasniti na primjeru obične diferencijalne jednadžbe prvog reda:

$$\frac{dy}{dt} = f(t, y(t))$$ \hspace{1cm} (2)

Zamjena derivacije s aproksimacijom konačne razlike prvog reda:

$$\frac{dy(t)}{dt} = \frac{y(t + \Delta t) - y(t)}{\Delta t}$$ \hspace{1cm} (3)

Uvrštavanjem izraza (2) u izraz (3) i sređivanjem dobiva se oblik jednadžbe koji predstavlja eksplicitno rješenje diferencijalne jednadžbe:

$$y(t + \Delta t) = y(t) + \Delta t \cdot f(t, y(t))$$ \hspace{1cm} (4)

Implicitni oblik zasniva se na sljedećem izrazu:

$$\frac{dy(t)}{dt} = \frac{y(t) - y(t - \Delta t)}{\Delta t}$$ \hspace{1cm} (5)
Uvrštavanjem izraza (4) u (5) i sređivanjem dobiva se konačni općeniti oblik implicitno diskretizirane jednadžbe:

\[y(t) = y(t - \Delta t) + \Delta t \cdot f(t, y(t)) \quad (6) \]

Može se uočiti da je eksplicitna metoda jednostavnija za računanje, budući da su poznate vrijednosti funkcije \(y(t) \) iz prošlog vremenskog trenutka, na temelju kojih se računaju nove vrijednosti funkcije. Implicitna metoda kompliciranija je za računanje, budući da se i općenitom slučaju za svaki vremenski korak mora rješavati sustav nelinearnih algebarskih jednadžbi. Međutim, prednost implicitne metode je mogućnost korištenja većih vremenskih koraka uz zadržavanje stabilnosti rješenja.

5.2.1.1. Diskretizacija jednadžbe očuvanja mase

Osnovni oblik zakona očuvanja mase prikazan je jednadžbom:

\[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v_j)}{\partial x_j} = 0 \quad (7) \]

Ako se jednadžba (7) integrira po kontrolnom volumenu i kontrolnoj površini, dobiva se oblik:

\[\int_{KV} \frac{\partial \rho}{\partial t} dV + \int_{KP} \rho v_j n_j dA = 0 \quad (8) \]

Takav oblik jednadžbe konačno se transformira u diskretizirani oblik (uz usvajanje pretpostavke za kvazijednodimenzionsko strujanje) koji se kasnije koristi za numeričko rješavanje sustava jednadžbi:

\[\rho_i^j - \rho_i^{j-\infty} = \frac{\rho^i v_i A_i - \rho_i^{j-1} v_{i-1} A_{i-1}}{\Delta t} = 0 \quad (9) \]

Jednadžba (9) sadrži umnožak \(\rho_i^j v_i A_i \), koji predstavlja masene protoke kroz pripadajuće kontrolne površine:
Tomislav Kovačić
Diplomski rad

Fakultet strojarstva i brodogradnje

\[m_i = \rho_i' v_i A_i \] \hfill (10)

Uzevši u obzir izraz za maseni protok, diskretizirana jednadžba očuvanja mase može se zapisat u sljedećem obliku:

\[\frac{\rho'_i - \rho_i^{i-\Delta t}}{\Delta t} V_i + m_i - m_{i-1} = 0 \] \hfill (11)

5.2.1.2. Diskretizacija jednadžbe očuvanja količine gibanja

Osnovni oblik jednadžbe količine gibanja prikazan je jednadžbom:

\[\frac{\partial (\rho v_j)}{\partial t} + \frac{\partial (\rho v_j v_i)}{\partial x_j} = -\rho g_j(z) - \frac{\partial p}{\partial x_j} + \frac{\partial \sigma_{ij}}{\partial x_j} \] \hfill (12)

Integracijom jednadžbe (12) po kontrolnom volumenu i kontrolnim površinama dobiva se oblik:

\[\int_{KV} \frac{\partial (\rho v_j)}{\partial t} dV + \int_{KP} \rho v_j dA = - \int_{KP} \rho g_j dV - \int_{KP} \rho n_j dA + \int_{KP} \sigma_{ij} n_j dA \] \hfill (13)

Diskretizacija jednadžbe količine gibanja provodi se sljedećim postupkom:

\[V_i \left(\rho'_i v_i' - \frac{v_i^{i-\Delta t}}{\Delta t} \right) + v_i' \left(\rho'_i - \rho_i^{i-\Delta t} \right) + \int_{A_{i+1}} (\rho v^2 - \sigma_{ii}) dA + \int_{A_i} (\rho v^2 - \sigma_{ii}) dA + \int_{A_{i-1}} \rho v^2 dA - \rho'_i g V_i + \int_{A_{i+1}} p_i dA - \int_{A_i} p_i dA + \int_{A_{i-1}} \sigma_{ij} dA \] \hfill (14)

Tenzor viskoznih naprezanja može se uz zanemarenje volumenske viskoznost zapisati kao:

\[\sigma_{ij} = 2\mu \left[\frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial v_k}{\partial x_k} \delta_{ij} \right] \] \hfill (15)

S obzirom na kvazijednodimenzionalno strujanje u obzir se uzimaju dvije komponente tenzora viskoznosti:
\[\sigma_{11} = 2\mu \left(\frac{\partial v}{\partial r} - \frac{1}{3} \frac{\partial v}{\partial z} \right) = \frac{4}{3} \mu \frac{\partial v}{\partial z} \]
\[\sigma_{12} = 2\mu \left(\frac{1}{2} \frac{\partial v}{\partial r} \right) = \mu \frac{\partial v}{\partial r} \]

Sljedeći korak je uzimanje u obzir izraza za viskozna naprezanja te vrijednosti integrala brzine i tlaka po površini stijenke cijevi:

\[\int_{\Lambda_i} \rho v^2 dA = 0 \]
\[\int_{\Lambda_i} p dA = 0 \]

Dobiven je sljedeći oblik diskretizirane jednadžbe količine gibanja:

\[V_i \left(\rho_i^{v_i} - \frac{v_i^{v_i-\Delta t}}{\Delta t} + v_i^{p_i^{v_i-\Delta t}} - \frac{\rho_i^{p_i^{v_i-\Delta t}}}{\Delta t} \right) - \int_{\Lambda_i} (\rho v^2 - \frac{4}{3} \mu \frac{\partial v}{\partial z}) dA + \int_{\Lambda_i} (\rho v^2 - \frac{4}{3} \mu \frac{\partial v}{\partial z}) dA = \]

\[-\rho_i^{v_i} g V_i + \int_{\Lambda_i} p_i dA - \int_{\Lambda_i} p_i dA + \mu A_{i,i} \frac{\partial v}{\partial r} \]

\[\mu A_{i,i} \frac{\partial v}{\partial r} = -\frac{A_i \Delta z_i}{2D_i} C_j \rho_j^{v_j} |v| \]

Diskretizacija jednadžbe očuvanja količine gibanja dodatno se pojednostavljuje pod sljedećim pretpostavkama i zanemarenjima:

- Uklanjanje vremenske derivacije količine gibanja – prelazak na statičku jednadžbu
- Zanemarivanje svih komponenata tenzora viskoznih naprezanja, osim smičnog naprezanja na stijenci [8]

Diskretizirani oblik jednadžbe količine gibanja je sljedeći:
\[p'_{ij} A_{ij} - p'_{i+1,j} A_{i+1,j} - \frac{A \Delta z_{ij}}{2D_i} C_f \rho_i' v_i |v_i| \]

(22)

Ako se u jednadžbi (22) veličine za gustoću, brzinu i poprečni presjek cijevi zamjene s pripadajućim masenim protocima, dobiva se konačni oblik diskretizirane jednadžbe očuvanja količine gibanja:

\[p'_{ij} A_{ij} - p'_{i+1,j} A_{i+1,j} - C_f \frac{A \Delta z_{ij}}{2D_i} m_i^2 \]

(23)

5.2.1.3. Diskretizacija jednadžbe očuvanja energije

Osnovni zakon očuvanja energije za fluid uključuje entalpiju, kinetičku i potencijalnu energiju. Zbroj navedenih oblika energije naziva se totalnom entalpijom \(h_{tot} \).

\[h_{tot} = h + \frac{v^2}{2} + e_p \]

(24)

Osnovni oblik zakona očuvanja energije za fluid prikazan je sljedećom jednadžbom:

\[\frac{\partial (\rho h_{tot})}{\partial t} + \frac{\partial (\rho v_j h_{tot})}{\partial x_j} = \frac{\partial p}{\partial t} + \frac{\partial (\sigma \cdot v_j)}{\partial x_j} - \frac{\partial q_j}{\partial x_j} \]

(25)

Integracijom jednadžbe (25) po kontrolnom volumenu i kontrolnim površinama dobiva se oblik:

\[\int_{KV} \frac{\partial (\rho h_{tot})}{\partial t} dV + \int_{KP} \rho v_j h_{tot} n_j dA = \int_{KV} \frac{\partial p}{\partial t} dA + \int_{KP} \sigma v_j n_j dA - \int_{KP} q_j n_j dA \]

(26)

Diskretizacijom jednadžbe očuvanja energije dobiva se sljedeći oblik:
U svrhu konkretnog proračuna razmatra se samo utjecaj specifične entalpije kao mjere ukupne energije. Integrali konvekcijskih tokova prelaze u oblik:

\[\int_A \rho v h_{tot} \, dA = \int_A \rho v h \, dA \quad (28) \]

Diskretizacija jednadžbe očuvanja energije dodatno se pojednostavljuje sa sljedećim pretpostavkama:

- Zanemaruje se vremenska derivacija tlaka
- Zanemaruju se snage viskoznih sila
- Zanemaruje se gustoća difuznih toplinskih tokova kroz kontrolne površine \(A_i \)
- Zanemaruje se utjecaj promjene kinetičke i potencijalne energije

Diskretizirani oblik jednadžbe očuvanja energije poprima sljedeći oblik:

\[V_i \left[h'_{i} \frac{\rho'_{i} - \rho'_{i-\Delta t}}{\Delta t} + \rho'_{i} \frac{h'_{i} - h'_{i-\Delta t}}{\Delta t} + \rho'_{i} v'_{i} \frac{v'_{i} - v'_{i-\Delta t}}{\Delta t} \right] - \int_{A_{i-1}} \rho v h_{tot} \, dA + \int_{A_{i}} \rho v h_{tot} \, dA = (27) \]

Ako se izrazi s veličinama gustoće, brzine i poprečnog presjeka u jednadžbi (29) zamjene s pripadajućim masnim protocima, dobiva se konačni oblik jednadžbe očuvanja energije:

\[V_i \left[h'_{i} \frac{\rho'_{i} - \rho'_{i-\Delta t}}{\Delta t} + \rho'_{i} \frac{h'_{i} - h'_{i-\Delta t}}{\Delta t} + \rho'_{i} v'_{i} \frac{v'_{i} - v'_{i-\Delta t}}{\Delta t} \right] + m'_{i} \frac{h'_{i} - m'_{i-1} h'_{i-1}}{\Delta t} - q_{i} A_{i,j} \quad (29) \]

Navedene jednadžbe očuvanja ne opisuju strujanje fluida u potpunosti. Sustav je potrebno zatvoriti s dopunskim jednadžbama i relacijama koje uključuju jednadžbe stanja
kapljевine i pare, izrazi za toplinsке i masene tokove te opis fизikalnih svojstava i prijelaza topline.

Prijelaz topline sa stijenke cijevi na radni medij opisan je algebarskim izrazom za gustoću toplinskog toka q u kontrolnom volumenu:

$$q = \alpha (\vartheta_s - \vartheta)$$ \hspace{1cm} (31)

5.2.2. Temperatura stijenke grijane cijevi

Stijenka cijevi je za potrebe ovog modela opisana diferencijalnom jednadžbom nestacionarnog provođenja topline, uz pretpostavku aksijalno-simetričnog profila temperature.

$$\frac{\partial \vartheta_s}{\partial t} = \frac{\lambda_s}{\rho_s c_s} \left(\frac{\partial^2 \vartheta_s}{\partial r^2} + \frac{1}{r} \frac{\partial \vartheta_s}{\partial r} + \frac{\partial^2 \vartheta_s}{\partial z^2} \right)$$ \hspace{1cm} (32)

Navedena jednadžba (32) opisuje temperaturni profil stijenke cijevi u slučaju postojanja temperaturnih gradijenata u radijalnom i aksijalnom smjeru. S obzirom na potrebe matematičkog modela, jednadžba (32) naknadno se pojednostavljuje s pretpostavkom o zanemarivanju promjene aksijalne komponente te se dobiva oblik:

$$\frac{\partial \vartheta_s}{\partial t} = \frac{\lambda_s}{\rho_s c_s} \left(\frac{\partial^2 \vartheta_s}{\partial r^2} + \frac{1}{r} \frac{\partial \vartheta_s}{\partial r} \right) = \frac{\lambda_s}{\rho_s c_s} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \vartheta_s}{\partial r} \right) \right)$$ \hspace{1cm} (33)

Za potrebe matematičkog modela i rješavanje temperature stijenke cijevi, uvedena je podjela cijevi na slojeve. Princip na kojem je stijenka podijeljena prikazan je na slici 8.
Slika 8. Slojevi stijenke vođeno-parnog trakta

Stijenka cijevi podijeljena je na konačni broj slojeva jednake debljine. Slojevi predstavljaju kontrolne volumene na koje se primjenjuje zakon provođenja topline i zakon očuvanja energije. Temperatura određenog sloja definirana je u središtu istog. Duljine slojeva su međusobno jednake i odgovaraju veličini prostornog koraka Δz koji se nalazi u izrazima koji opisuju strujanje fluida unutar cijevi.

Izvod jednadžbi značajno olakšava pretpostavka o konstantnim svojstvima stijenke cijevi (gustoća ρ, toplinska provodljivost λ i specifični toplinski kapacitet c).

Integracijom osnovne jednadžbe provođenja topline (32) dobiva se sljedeći oblik:

$$\int_{V_k} \frac{\partial \vartheta}{\partial t} \, dV = \int_{V_k} \frac{\lambda}{\rho c_s} \left(r \frac{\partial \vartheta}{\partial r} \right) \, dV$$

Diskretizacijom se dobiva oblik:

$$2\pi \frac{\vartheta_{r,m+1} - \vartheta_{r,m+1}^{\Delta t}}{\Delta t} \left(\frac{r_m^2}{2} - \frac{r_m^2}{2} \right) = 2\pi \frac{\lambda}{\rho c_s} \left[\left(r \frac{\partial \vartheta}{\partial r} \right)_{m+1} - \left(r \frac{\partial \vartheta}{\partial r} \right)_{m} \right]$$
Izrazi u zagradama s desne strane u jednadžbi (35) mogu se diskretizirati kako je prikazano:

\[
\left(r \frac{\partial \vartheta}{\partial r} \right)_{m+1} = r_{m+1} \frac{\vartheta_{s,m+1} - \vartheta_{s,m}}{\Delta r}
\]

(36)

\[
\left(r \frac{\partial \vartheta}{\partial r} \right)_m = r_m \frac{\vartheta_{s,m} - \vartheta_{s,m-1}}{\Delta r}
\]

(37)

Konačni oblik diskretizirane jednadžbe provođenja topline kroz stijenku za svaki sloj prikazan je jednadžbom:

\[
\frac{\rho c}{\Delta t} r_{m+0.5} \Delta r \left(\vartheta_{s,m+0.5} - \vartheta_{s,m+0.5}^{-\Delta t} \right) = \frac{\lambda_s}{\Delta r} \left(r_{m+1} \left(\vartheta_{s,m+1} - \vartheta_{s,m+1}^{-\Delta t} \right) - r_m \left(\vartheta_{s,m} - \vartheta_{s,m}^{-\Delta t} \right) \right)
\]

(38)

Kvazistacionarni rubni uvjeti postavljeni su na vanjsku i unutarnju površinu stijenke cijevi. Sljedećom jednadžbom opisana je vanjska površina stijenke:

\[
2r_v \pi \alpha_s \left(\vartheta_d - \vartheta_{s,v} \right) = 2r_v \pi \frac{2 \lambda_u}{\Delta r} \left(\vartheta_{s,v} - \vartheta_{s,v+0.5} \right)
\]

(39)

Sljedećom jednadžbom opisana je unutarnja površina stijenke:

\[
2r_v \pi \alpha_s \left(\vartheta_d - \vartheta_{s,v} \right) = 2r_v \pi \frac{2 \lambda_u}{\Delta r} \left(\vartheta_{s,v} - \vartheta_{s,v+0.5} \right)
\]

(40)

Rubni slojevi opisani su modificiranim jednadžbama provođenja topline. Unutarnji rubni sloj opisan je jednadžbom:

\[
\frac{\rho c}{\Delta t} r_{0.5} \Delta r \left(\vartheta_{r,0.5} - \vartheta_{r,0.5}^{-\Delta t} \right) = \frac{\lambda_s}{\Delta r} \left(r \vartheta_{s,1.5} - \vartheta_{s,1.5}^{-\Delta t} \right) - 2 \frac{\lambda_r}{\Delta r} \left(\vartheta_{s,0.5} - \vartheta_{s,0.5}^{-\Delta t} \right)
\]

(41)

Vanjski rubni sloj opisan je jednadžbom:

\[
\frac{\rho c}{\Delta t} r_{n+0.5} \Delta r \left(\vartheta_{r,n+0.5} - \vartheta_{r,n+0.5}^{-\Delta t} \right) = \frac{\lambda_s}{\Delta r} \left(r \vartheta_{s,n+1.5} - \vartheta_{s,n+1.5}^{-\Delta t} \right) - 2 \frac{\lambda_r}{\Delta r} \left(\vartheta_{s,n+0.5} - \vartheta_{s,n+0.5}^{-\Delta t} \right)
\]

(42)
Kao i strujanje u cijevi, vremenska diskretizacija jednadžbi koje opisuju stijenku provedena je implicitno.

5.2.3. \textit{Temperatura stijenke kolektora}

Razmatranja koja se provode u ovom radu ograničena su na model temperaturnih naprezanja u stijenci cilindričnog modela kolektora. Uvjet je da se razmatranja vrše na dijelovima cilindra podalje od njegovih krajeva i ušća priključenih cijevi, pa se mogu dovoljno dobro aproksimirati jednodimenzionalnim modelom.

Matematički modela nestacionarnog provođenja topline kroz stijenku cilindričnog plašta zasniva se na sljedećoj pretpostavci. Aproksimacija cilindričnog plašta s ravnom pločom beskonačne veličine. Takva aproksimacijom zanemaruje se utjecaj zakrivljenja stijenke, kao i utjecaj prostornih gradijenata temperature u tangencijalnom i uzdužnom smjeru na oblik temperaturnog polja.

Budući da je usvojena pretpostavka o jednodimenzionalnom polju, prostorna koordinata z predstavlja smjer okomit na ravnu ploču. Koeficijent temperaturne vodljivosti λ u općenitom slučaju ovisan je o temperaturi, pa je stoga jednadžba (32) nelinearna.

Slično kao i za proračunavanje vodenoparnog trakta, izračunavanje temperaturnog polja $\mathcal{S}(r)$ za neki proizvoljnu promjenu temperature pare unutar kolektora nije moguće analitički riješiti jednadžbu. Potrebno je prostornu varijablu diskretizirati metodom konačnih volumena.

Kako bi bilo moguće proračunati temperaturno polje stijenke, potrebno je podijeliti stijenku na n slojeva jednake debljine δ. Takva podjela prikazana je na slici Slika 8.

Slojevi. Bitno je naglasiti da su slojevi virtualni, tj. u stvarnosti ne postoje, već njihov broj ovisi o potrebama proračuna. Postavljaju se jednadžbe bilance energije za svaki od slojeva, a pretpostavka je da se profil temperature između simetrala susjednih slojeva može smatrati linearnim. To znači da je gustoća toplinskog toka između dvaju susjednih slojeva proporcionalna razlici temperature u simetralama tih slojeva.
Koeficijent toplinske vodljivosti u svakom sloju stijenke ovisi o temperaturi tog sloja. U proračunu se pretpostavljaju konstantne vrijednosti koeficijenta toplinske vodljivosti materijala. Koeficijent prijelaza topline s pare na stijenku ovisi u općenitom slučaju o stanju pare, brzini strujanja i temperaturi ruba stijenke.

Pretpostavka koja je usvojena na rubni vanjski sloj stijenke je pretpostavka idealne izolacije. Na taj način, sustav je određen samo s temperaturom pare unutar kolektora i koeficijentom prijelaza topline.

Matematički model nestacionarnog provođenja topline kroz stijenku opisan je sustavom od n običnih diferencijalnih jednadžbi:

\[
\frac{d\theta_{s,i}}{dr} = \frac{1}{\delta^2} \frac{\lambda_s}{\rho_s c_s} \left(2C_1 \theta - (3 - 2C_2) \theta_{s,i} + \theta_{s,i+1} \right) \quad (43)
\]

\[
\frac{d\theta_{s,i+1}}{dr} = \frac{1}{\delta^2} \frac{\lambda_s}{\rho_s c_s} \left(\theta_{s,i} + \theta_{s,i+2} - 2\theta_{s,i+1} \right) \quad (44)
\]

\[
\frac{d\theta_{s,n}}{dr} = \frac{1}{\delta^2} \frac{\lambda_s}{\rho_s c_s} \left(\theta_{s,n-1} + \theta_{s,n} \right) \quad (45)
\]

Pri čemu su konstante u jednadžbi (43) definirane kao:

\[
C_1 = \frac{\alpha_p \delta}{\alpha_p \delta + 2\lambda_s} \quad (46)
\]

\[
C_2 = \frac{2\lambda_s}{\alpha_p \delta + 2\lambda_s} \quad (47)
\]

5.2.4. Temperaturna naprezanja u stijenci kolektora

S obzirom na način računanja temperaturnog profila stijenke kolektora, pripadajuća temperaturna naprezanja računaju se za svaki od virtualnih slojeva. Temperaturno naprezanje σ_T u sloju i ovisi o razlici temperature tog sloja i prosječne temperature stijenke.
\[\sigma_{T,i} = \frac{\beta \cdot E}{1-U} \left(\theta_{sr} - \theta_i \right) \] (48)

Osim o temperaturnom profilu, temperaturna naprezanja ovise o mehaničkim svojstvima materijala stijenke. Prosječna temperatura stijenke računa se prema izrazu:

\[\theta_{sr} = \frac{1}{n} \sum_{i=1}^{n} \theta_i \] (49)

Kako bi se izračunalo ukupno naprezanje u stijenci cijevi potrebno je uzeti u obzir naprezanja uzrokovana tlakom pare u cijevi koja se računaju prema izrazu:

\[\sigma_p = \frac{D}{2 \cdot s} \cdot p \] (50)

Tlačna jednaka su u svakom sloju. Ukupno naprezanje u stijenci cijevi računa se prema izrazu za svaki sloj:

\[\sigma = \sigma_p + \sigma_T \] (51)

Dozvoljeno naprezanje materijala ovisno je o lokalnoj temperaturi:

\[\sigma_d = \sigma_d(\theta) \] (52)

Budući da svaki sloj u općenitom slučaju ima različitu lokalnu temperaturu, različita su i dozvoljena naprezanja za svaki sloj istog segmenta. Iz tog razloga uvodi se veličina koja se naziva zaliha naprezanja, a definira se prema izrazu:

\[\sigma_z = \min \left(\sigma_{d,i} - |\sigma_i| \right) \] (53)

Zaliha naprezanja vrijednost je koja pokazuje za koliko je moguće povećati ukupno naprezanje u određenom segmentu cijevi, da bi se dosegla vrijednost dozvoljenog naprezanja za pripadajuću lokalnu temperaturu. Iz toga proizlazi da ukoliko je vrijednost zalihe naprezanja \(\sigma_z \) manja od nule, znači da u stijenci vlada naprezanje veće od dozvoljenog.
5.2.5. Dimni plinovi

Strujanje dimnih plinova opisano je pojednostavljenom jednadžbom očuvanja energije, u kojoj su zanemareni svi oblici energije osim specifične entalpije.

\[m_{d,i} \frac{dh_{d,i}}{dt} = m_{d,i-1}h_{d,i-1} - m_{d,i}h_{d,i} - \Phi_{d,i} \]

Jednadžba (54) dodatno je pojednostavljena zanemaranjem akumulacije energije u svakom segmentu (\(\frac{dh_{d,i}}{dt} = 0 \)). Konačni oblik jednadžbe očuvanja energije za dimne plinove je:

\[m_{d,i}h_{d,i} = m_{d,i-1}h_{d,i-1} - \Phi_{d,i} \]

Entalpija dimnih plinova u svakom segmentu računa se prema izrazu:

\[h_{d,i} = c_p g_{d,i} \]

Gustoća toplinskog toka kojeg vrući dimni plinovi predaju stijenci cijevi (za svaki segment posebno), računa se prema izrazu:

\[q_d = \alpha_d \left(g_d - g_{s,v} \right) \]

Vrijednost toplinskog toka od strance dimnih plinova određena je gustoćom toplinskog toka i vanjskom površinom grijane cijevi:

\[\Phi_d = q_d \cdot A_s \]

5.3. Početni i rubni uvjeti

Kako bi se sustav jednadžbi mogao riješiti, potrebno je zadati početne i rubne uvjete. Početni uvjeti određuju točku u vremenu na temelju koje se izračunavaju veličine u sljedećem vremenskom trenutku. U konkretnom sustavu (termoenergetski blok) početni uvjeti proračunavaju se prema željenom opterećenju u kojemu se pogon nalazi.
Pogonsko stanje u kojem sustav radi definirano je preko rubnih uvjeta. Proračun stacionarnog (početnog) stanja vrši se preko zadanih rubnih uvjeta rješavanjem sustava jednadžbi koje se dobiju izjednačavanjem vremenskih derivacija s nulom.

Rubni uvjeti odvajaju sustav od okoline, a općenito obuhvaćaju protok nametnut pumpm (broj okretaja pumpe), otvorenost ventila, protok i ulaznu temperaturu dimnih plinova. Promjena pogonskog stanja u pravilu je određena rubnim varijablama, koje su u pravilu pod utjecajem regulacijskog sustava. Broj okretaja pumpe određuje položaj $Q-H$ karakteristike te se na taj način protok može održavati konstantnim uz promjene tlaka u sustavu.

Protok i temperatura dimnih plinova u realnom slučaju određeni su sastavom i protokom goriva i pretičkom zraka.

S obzirom da u ovom radu regulacijska djelovanja nisu izravno matematički opisana, potrebno je ručno zadavati ovisnost određene rubne varijable o vremenu.

5.4. Postupak rješavanja

Nakon diskretizacije jednadžbi navedenih u prethodnom poglavlju, matematički model termoenergetskog bloka može se rješavati kao nelinearni problem. Općenito, problem se sastoji od velikog broja nelinearnih algebarskih jednadžbi s dopunskim relacijama i funkcijama stanja za vodenu paru.

Kao što je već navedeno, neovisne varijable su tlak p i specifična entalpija h. Toplinsko stanje vodene pare (i kapljevine) i fizikalna svojstva potpuno su definirana s dvije zadane veličine. Gustoća i temperatura vode su funkcije tlaka i specifične entalpije.

$$\vartheta = \vartheta(p,h) \quad (59)$$

$$\rho = \rho(p,h) \quad (60)$$

Funkcije stanja za vodu preuzimaju se u toku proračuna iz tabličnih podataka preko XSteam alata koji sadrži sve potrebne podatke o fizikalnim svojstvima i funkcijama stanja.
Budući da je sustav diferencijalnih jednadžbi diskretiziran implicitno, za svaki vremenski korak simulacije potrebno je riješiti veliki broj nelinearnih algebarskih jednadžbi. Općenito se takav sustav zapisuje kao:

\[f(x) = 0 \] (61)

Funkcija \(f \) predstavlja vektor funkcija, a \(x \) predstavlja vektor nepoznanica. Nepoznanice su tlakovi i specifične entalpije u vodenoparnom traktu. Sustav se rješava iterativno, pomoću namjenskog rješavača \(fsolve \) unutar MATLAB paketa.

Navedeni alat za rješavanje nelinearnih algebarskih jednadžbi koristi iterativne metode u svrhu pronalaženja rješenja. Takve metode zahtijevaju početnu točku, odnosno pretpostavljeno rješenje \(x_0 \), od kojeg započinje traženje pravog rješenja sustava jednadžbi. Vrijeme koje je potrebno za rješavanje sustava jednadžbi pomoću takvog alata značajno ovisi o pretpostavljenim rješenjima. Što je pretpostavljeno rješenje bliže pravom rješenju vrijeme rješavanja će biti kraće i obrnuto. Najjednostavnijii odabir vrijednost koje ulaze kao pretpostavljena rješenja jesu rješenja sustava u početnom trenutku \(t = 0 \). Takav odabir nije i najefikasnijii, budući da se propagacijom poremećaja vrijednosti varijabli sve više udaljavaju od vrijednosti u početnom trenutku. Značajno povećanje brzine postupka rješavanja postiže se ako se za pretpostavljena rješenja uzimaju vrijednosti rješenja iz prošlog vremenskog trenutka \(t - \Delta t \). Na taj način, pretpostavljena rješenja uvijek prate smjer u kojem se kreću vrijednosti rješenja u svakom vremenskom trenutku. Nije teško zaključiti da se u slučaju postizanja novog stacionarnog stanja nakon određenog vremena te dvije vrijednosti poklapaju i rješavač završava postupak već nakon prvog koraka.

Ključne veličine koje utječu na rezultat i brzinu računanja su veličine prostornog koraka \(\Delta z \) i vremenskog koraka \(\Delta t \). Općenito, implicitno diskretizirani sustavi omogućuju uspješno rješavanje sustava jednadžbi i s većim vremenskim koracima. Smanjenje veličine prostornog koraka direktno smanjuje veličinu kontrolnog volumena, a broj istih se
Utjecaj veličine vremenskog koraka Δt na brzinu izvođenja proračuna nije jednoznačan. S jedne strane, veličina vremenskog koraka određuje broj koraka, što upućuje na proporcionalno vremena potrebno za izvršavanje simulacije. S druge strane, veličina vremenskog koraka ima značajan utjecaj na brzinu rješavanja sustava u jednom vremenskom trenutku. S obzirom na prethodno navedene tvrdnje o iterativnom postupku rješavanja, može se uočiti da manji vremenski korak Δt znači da će i rješenja sustava manje odstupati od rješenja u prethodnom vremenskom trenutku. Očigledno je da veći vremenski korak izaziva veća odstupanja rješenja sustava od pretpostavljenog rješenja. Uzevši to u obzir, vrijeme potrebno za rješavanje jednog vremenskog koraka može se značajno smanjiti odabirom manjeg vremenskog koraka. Posebnu pažnju zahtjeva uzimanje u obzir promjene koeficijenata prijenosa topline unutar cijevi. Koeficijenti prijenosa topline značajno se razlikuju u slučaju strujanja tvari koja ne mijenja se agregatno sanje od slučaja isparavanja ili kondenzacije. S obzirom da su koeficijenti prijenosa topline kod isparavanja puno veći, uzimanje prevelikog prostornog koraka (kontrolnom volumenu) može uzrokovati nestabilnosti u postupku rješavanja i uništiti proračun.
6. SIMULACIJA

U sljedećem dijelu teksta bit će pokazani rezultati simulacije za nekoliko pogonskih uvjeta. Rezultati simulacije uključuju vremenske odzive karakterističnih veličina. Naglasak u ovom radu je na temperaturnim naprezanjima u stijenci izlaznog kolektora pregrijača pare. Kao što je već navedeno, temperaturna naprezanja u stijenci kolektora ovise o temperaturnom profilu stijenke. Provedene simulacije odnose se na termoenergetski blok snage 210 MW.

Jedan od najvažnijih faktora je materijal stijenke kolektora. U simulaciji se koriste svojstva čelika 10CrMo910. Osnovna fizikalna i mehanička svojstva čelika prikazana su u tablici 1.

<table>
<thead>
<tr>
<th>Tablica 1. Svojstva čelika 10CrMo910</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
</tr>
<tr>
<td>ρ</td>
</tr>
<tr>
<td>ν</td>
</tr>
<tr>
<td>E</td>
</tr>
</tbody>
</table>

Vrlo važno mehaničko svojstvo je dopušteno naprezanje materijala. Na dijagramu na slici 9 prikazana je ovisnost dopuštenog naprezanja materijala o temperaturi. Može se učiti da pri nižim radnim temperaturama (od 200°C do 450°C) dopušteno naprezanje pada puno manjom brzinom u odnosu na više temperature. Budući da je za termoenergetski blok najvažnije puno opterećenje (sa temperaturama iznad 500°C) može se vidjeti na dijagramu da u tom području dopuštena naprezanja naglo opadaju s povećanjem temperature. U području iznad temperature punog opterećenja od 530°C ulazi se u područje koje je na granici izdržljivosti materijala. Iz tog razloga, iznimno je važno držati temperaturu, temperaturne promjene i tlak u propisanim granicama.
6.1. Upuštanje u pogon termoelektrane

S obzirom na zahtjeve elektroenergetskog sustava i potreba za opskrbom električnom energijom, termoenergetski blok tijekom godine ulazi i izlazi iz pogona. Upuštanje termoenergetskog bloka u pogon uvjetovano je raznim čimbenicima. Vrijeme potrebno da parametri pare postignu vrijednosti punog opterećenja ovisi o stanju u kojem je termoenergetski blok bio od početka upuštanja u pogon. S obzirom na vrijeme koje je termoenergetski blok bio izvan pogona, može se upuštanje u pogon razvrstati na tri tipa:

- Hladni start
- Topli start
- Vrući start

Ključne razlike između pojedinih tipova startova očituju se u vremenu potrebnom za postizanje punog opterećenja bloka. S obzirom na tip starta, različite su promjene protoka goriva, napojne vode i drugih veličina.
6.1.1. **Hladni start**

Hladni start termoenergetskog bloka odnosi se na pokretanje termoenergetskog bloka koji je bio duže vremena izvan pogona. Temperatura na početku hladnog starta jednak je temperaturi okoliša, a pretlak je jednak nuli. Upuštanje u rad termoenergetskog bloka iz takvog stanja zahtjeva postupno povećanje parametara pare kroz vremenski period od nekoliko sati. Takvo sporo pokretanje je nužno zbog zaštite materijala pojedinih komponenata sustava. Velike promjene temperature od početnog do krajnjeg stanja mogu dovesti do velikih temperaturnih naprezanja i pregaranja materijala.

Prva faza upuštanja u pogon iz hladnog stanja je dovođenje vode u generator pare i uspostavljanje minimalnog protoka kroz izmjenjivače. Nakon toga počinje uljna potpala.

Na temelju izvedenog matematičkog modela provedena je simulacija hladnog starta. Na dijagramu na slici 10 prikazana je promjena temperature od samog pokretanja do konačnog stanja, tj. do vrijednosti punog opterećenja.

![Dijagram hladnog starta](image)

Slika 10. Temperatura pare prilikom hladnog starta

Promjena temperature odvija se prema zakonitostima koje nameću ograničenja svih komponenata termoenergetskog bloka. Temperatura ne raste jednoliko tijekom upuštanja,
već se u određenim periodima stacionira ili mijenja brzinu porasta. Promjenom protoka goriva mijenjaju se toplinski tokovi, pa se na taj način događaju promjene u porastu temperature.

Promjena tlaka prikazana je na dijagramu na slici 11.

![Dijagram tlaka pri hladnom startu](image)

Slika 11. Tlak pare prilikom hladnog starta

Porast tlaka odvija se postupno, a postizanje vrijednosti od 70 bar označava početak puštanja pare u turbinu. Postignuta vrijednost drži se duže vremena, kada počinje konstantan porast tlaka do konačne vrijednosti od 142,3 bar.

Proces upuštanja termoenergetskog bloka iz hladnog stanja traje 310 minuta, ne računajući vrijeme potrebno za punjenje generatora pare vodom.

Temperaturni profil stijenke kolektorja prikazan je na dijagramu na slici 12. Odabran je manji vremenski interval kako bi se grafički bolje razaznale temperature pojedinih slojeva. Najveće temperature su u prvom sloju stijenke, tj. u onom sloju najbliže vodenoj pari u kolektoru. Ovisno o promjeni temperature pare i temperaturama u slojevima mijenjaju se razlike temperatura između pojedinih slojeva. Temperaturni profil stijenke važan je zbog proračuna temperaturnih naprezanja koja su ovisna o temperaturama slojeva u svakom vremenskom trenutku.
Slika 12. Temperaturni profil stijenke prilikom hladnog starta

Kao posljedica promjene temperature i nejednolike progrijanosti stijenke, javljaju se temperaturna naprezanja, koja su prikazana na dijagramu na slici 13.

Slika 13. Temperaturna naprezanja u stijenci kolektora prilikom hladnog starta
Odmah se može uočiti da se javljaju naprezanja različitih predznaka. Prema jednadžbi (48) kojom su opisana temperaturna naprezanja, može se uočiti da predznak temperaturnog naprezanja ovisi o razlici prosječne temperature stijenke i razmatranog sloja. Budući da se temperature slojeva znatno razlikuju, razlike za neke slojeve bit će pozitivne, a za neke negativne.

U određenim vremenskim intervalima temperaturna naprezanja gotovo su jednaka nuli. Razlog tome je stagnacija temperature pare u tim intervalima. Maksimalne apsolutne vrijednosti temperaturnih naprezanja poklapaju se s najvećim porastom temperature pare.

Ukupna naprezanja u svakom od slojeva stijenke ovisi osim o temperaturnim i o naprezanjima uslijed tlaka. Prema jednadžbi (51) naprezanja se zbrajaju za svaki sloj posebno. Ukupna naprezanja prikazana su na dijagramu na slici 14.

Slika 14. Ukupna naprezanja u stijenci kolektora prilikom hladnog starta

Budući da se vrijednosti zbrajaju s predznakom, ukupna naprezanja mogu biti pozitivna i negativna. Vrijednosti tlaka su vrlo male u prvi nekoliko desetaka minuta, pa shodno tome tlačna naprezanja imaju vrlo mali utjecaj na ukupna naprezanja. S porastom tlaka do svoje maksimalne vrijednosti, tlačna naprezanja postaju dominantna, pa krivulja ukupnih naprezanja otprije prati krivulju tlaka. Budući da dopuštena naprezanja u
materijalu nisu uvjetovana predznakom ukupnog naprezanja u sloju, potrebno je razmatrati apsolutne vrijednosti ukupnih naprezanja. Slojevi stijenke koji su najbliže pari izloženi su tlačnom temperaturnom naprezanju, a suprotnog su predznaka od naprezanja uzrokovanih tlakom pare. Takva zakonitost vrijedi u slučaju zagrijavanja stijenke s unutarnje strane, a to i je slučaj tijekom upuštanja u pogon.

Kako bi se utvrdilo kolika su naprezanja u stijenci u odnosu na dozvoljena naprezanja, potrebno je za svaki sloj stijenke u svakom vremenskom trenutku odrediti dozvoljeno naprezanje, a zatim ga usporediti s ukupnim naprezanjem u razmatranom sloju. Uzimajući vrijednosti dozvoljenih naprezanja iz dijagrama na slici Slika 9, može se prikazati razlike između dozvoljenih i apsolutne vrijednosti izračunatih naprezanja u stijenci. Takav dijagram prikazan je na slici 15.

![Slika 15. Razlike dopuštenog i izračunatog naprezanja prilikom hladnog starta](image_url)

Može se uočiti da se razlike dozvoljenog i izračunatog naprezanja za svaki sloj s vremenom smanjuju. Razlog tomu je sve veći porast tlaka u vremenu i sve veći utjecaj tlačnih naprezanja. U konačnoj točki, koja zapravo predstavlja stanje u punom opterećenju bloka, visoki tlak uzrokuje visoka tlačna naprezanja te ostavlja puno manje rezerve za eventualne brže promjene temperature u takvom stanju.
Minimalna vrijednost razlike dozvoljenog i izračunatog naprezanja (usporjeđujući sve slojeve) u svakom vremenskom trenutku predstavlja „zalihu naprezanja“ i kao takva može poslužiti za eventualnu procjenu mogućnosti povećanja brzine promjene temperature, odnosno brzine upuštanja u pogon. Krivulja zalihe naprezanja prikazana je na dijagramu na slici 16.

\[\min |\sigma_\text{d} - \sigma|, \text{N/mm}^2\]

\[t, \text{min}\]

Slika 16. Zaliha naprezanja za stijenku kolektora prilikom hladnog starta

Pri nižim temperaturama dozvoljena naprezanja su puno veća u odnosu na dozvoljena naprezanja pri većim temperaturama, pa je stoga kritično područje pri postizanju punog opterećenja koje je okarakterizirano visokim tlakom i temperaturom.

6.1.2. **Topli start**

Topli start termoenergetskog bloka predstavlja pokretanje termoenergetskog bloka iz stanja u kojem se već u početnom trenutku proizvodi para s većom temperaturom i tlakom. Iako se takva para ne tretira kao svježa, znatno utječe na sposobnost termoenergetskog bloka da omogući brže upuštanje u pogon u odnosu na hladni start.
Kao i kod hladnog starta, najprije se osigurava minimalni potrebni protok napojne vode do paljenja uljnih plamenika. Topli start je okarakteriziran znatno većom brzinom upuštanja u pogon u odnosu na hladni start. Vrijeme potrebno za upuštanje toplim startom je oko 130 minuta.

Na dijagramu na slici 17 prikazana je promjena temperature od samog pokretanja do konačnog stanja, tj. do vrijednosti punog opterećenja.

Slika 17. Temperatura pare prilikom toplog starta

Odmah na početku toplog starta temperatura počinje rasti približno konstantnom brzinom. Brzina porasta temperature mijenja se s vremenom u ovisnosti o uključivanju gorionika ugljena i promjene protoka napojne vode.

Promjena tlaka prikazana je na dijagramu na slici 18.
Porast tlaka odvija se postupno, a postizanje vrijednosti od 70 bar, kao i kod hladnog starta označava početak puštanja pare u turbinu. Postignuta vrijednost drži se duže vremena, kada počinje konstantan porast tlaka do konačne vrijednosti od 142,3 bar.

Temperaturni profil stijenke kolektora prikazan je na dijagramu na slici 19. Može se uočiti da približno konstanitn porast temperature posljedično uzrokuje i približno konstantan prirast temperature svih slojeva, pa su razlike temperature među slojevima približno konstantne u vremenu.
Temperaturna naprezanja prate brzinu porasta temperature pare, a nakon smanjenja brzine prirasta smanjuju se kako je prikazano na dijagramu na slici 20.

Slika 19. Temperaturni profil stijenke prilikom toplog starta

Slika 20. Temperaturna naprezanja u stijenci kolektora prilikom toplog starta
Za razliku od temperaturnih naprezanja u hladnom startu, može se uočiti da nema vremenskih intervala u kojima se temperaturna naprezanja približavaju nuli (osim na samom početku i na samom kraju). Razlog tome je nepostojanje intervala u kojem temperatura pare stagnira, kao kod hladnog starta.

Ukupna naprezanja prikazana su na dijagramu na slici 21.

![Diagram ukupne naprezanja](image)

Slika 21. Ukupna naprezanja u stijenci kolektora prilikom toplog starta

Ukupna naprezanja ovise u prvim trenucima najviše o temperaturnim, a kasnije najviše o tlačnim naprezanjima. Može se prikazati razlike između dozvoljenih i izračunatih naprezanja u stijenci. Takav dijagram prikazan je na slici 22.
Slika 22. Razlike dopuštenog i izračunatog naprezanja prilikom toplog starta

Krivulja zalihe naprezanja prikazana je na dijagramu na slici 23.

Slika 23. Zaliha naprezanja za stijenku kolektora prilikom toplog starta
6.1.3. Vrući start

Vrući start termoenergetskog bloka odnosi se na pokretanje termoenergetskog bloka iz stanja u kojem već postoji proizvodnja pare visokih parametara. Vrijeme potrebno za ovakvo pokretanje je 100 minuta, što je brže nego pokretanje toplim startom.

Kao i kod hladnog i toplog starta, najprije se osigurava minimalni protok napojne vode, koji traje oko 30 minuta, a nije uračunat u gore navedeno vrijeme upuštanja.

Na dijagramu na slici 24 prikazana je promjena temperature od samog pokretanja do konačnog stanja, tj. do vrijednosti punog opterećenja.

Slika 24. Temperatura pare prilikom vrućeg starta

Na početku toplog starta temperatura počinje rasti približno konstantnom brzinom. Brzina porasta temperature mijenja se s vremenom u ovisnosti o uključivanju gorionika ugljena i promjene protoka napojne vode.

Promjena tlaka prikazana je na dijagramu na slici 25.
Slika 25. Tlak pare prilikom vrućeg starta

Tlak se drži 60 minuta na konstantnoj početnoj vrijednosti od 105 bar. Zatim postoji konstantni prirast tlaka sve do vrijednosti punog opterećenja od 142,2 bar. Postignuta vrijednost punog opterećenja drži se konstantnom desetak minuta.

Temperaturni profil stijenke kolektor prikazan je na dijagramu na slici 26.

Slika 26. Temperaturni profil stijenke prilikom vrućeg starta
Temperaturna naprezanja prate brzinu porasta temperature pare, a nakon smanjenja brzine prirasta smanjuju se kako je prikazano na dijagrunu na slici 27.

Slika 27. Temperaturna naprezanja u stijenci kolektora prilikom vrućeg starta

Razlog tome je nepostojanje intervala u kojem temperatura pare stagnira, kao kod hladnog starta.

Ukupna naprezanja prikazana su na dijagramu na slici 28.
Slika 28. Ukupna naprezanja u stijenci kolektora prilikom vrućeg starta

S obzirom da vrući start podrazumijeva tlak od 105 bar na početku, utjecaj tlačnih naprezanja velik je na početku i na kraju. Razlike između dozvoljenih i izračunatih naprezanja u stijenci prikazane su na dijagramu na slici 29.

Slika 29. Razlike dopuštenog i izračunatog naprezanja prilikom vrućeg starta
Krivulja zalihe naprezanja prikazana je na dijagraqmu na slici 30.

Slika 30. Zaliha naprezanja za stijenku kolektora prilikom vrućeg starta

6.2. Ispitivanje promjene brzine temperature i tlaka pare

S obzirom da u navedenim rezultatima simulacija upuštanja u pogon postoje zalihe naprezanja, može se provesti ispitati postoje li mogućnosti za brže promjene tlaka i temperature tijekom upuštanja u pogon.

6.2.1. Ubrzani hladni start

Upuštanje termoenergetskog bloka iz hladnog stanja ispitano je sa ubrzanim promjenama tlaka i temperature. Promjene koje se odvijaju do 140. minute nisu mijenjane, budući da se u tom intervalu podižu parametri napojne vode do stanja pregrijane pare. Nakon 140. minute brzina promjena temperature i tlaka pare povećana je i pogonsko stanje postignuto je u 180. minuti. Promjena temperature pare prikazana je na dijagramu na slici 32.
Slika 31. Temperatura pare prilikom ubrzanog hladnog starta

Promjena tlaka prikazana je na dijagramu na slici 32.

Slika 32. Tlak pare prilikom ubrzanog hladnog starta

Temperaturni profili stijenke prikazani su na dijagramu na slici 33.
Slika 33. Temperaturni profil stijenke prilikom ubrzanog hladnog starta

Promjena temperaturnih naprezanja prikazana je na dijagramu na slici 34. Temperaturna naprezanja su veća za slučaj ubrzanog hladnog starta u pripadajućem vremenskom intervalu.

Slika 34. Temperaturna naprezanja u stijenci kolektora prilikom ubrzanog hladnog starta
Ukupna naprezanja po slojevima u slučaju ubrzanog hladnog starta prikazana su na dijagramu na slici 35. U odnosu na neubrani hladni start, ova naprezanja su nešto veća u vremenskom intervalu koji je obuhvaćen povećanom brzinom promjene temperature.

Slika 35. Ukupna naprezanja u stijenci kolektora prilikom ubrzanog hladnog starta

Razlike između dozvoljenih i izračunatih naprezanja u stijenci u slučaju ubrzanog hladnog starta prikazane su na dijagramu na slici 36.
Slika 36. Razlike dopuštenog i izračunatog naprezanja prilikom hladnog starta

Zaliha naprezanja za stijenku kolektor prikazana je na dijagramu na slici 37.

Slika 37. Zaliha naprezanja za stijenku kolektora prilikom ubrzanog hladnog starta
6.2.2. **Ubrzani topli start**

Upuštanje termoenergetskog bloka iz toplog stanja ispitano je sa ubrzanim promjenama tlaka i temperature. Promjene koje se odvijaju do 50. minute nisu mijenjane, budući da se u tom intervalu podižu parametri napojne vode do stanja pregrijane pare. U tom trenutku para se pušta u turbinu. Vrijeme zagrijavanje pregrijane pare na temperaturu punog opterećenja je skraćeno, te ukupno vrijeme iznosi 70 minuta, što je 60 minuta kraće od neubrzanog toplog starta. Promjena temperature pare prikazana je na dijagramu na slici 38.

![Dijagram temperatura pare prilikom ubrzanog toploga starta](image)

Slika 38. Temperatura pare prilikom ubrzanog toploga starta

Promjena tlaka za ubrzeni topli start prikazana je na dijagramu na slici 39.
Temperaturni profili stijenke u slučaju ubrzanog toplog starta prikazani su na dijagramu na slici 40. Može se uočiti da se temperaturna razlika između svih slojeva smanjuje prema kraju procesa. Sustav kojeg čine para i stijenka kolektora teži k stacionarnom stanju i nakon nekog vremena stacionarnog rada temperature slojeva će se izjednačiti, ukoliko je usvojena pretpostavka o idealnoj izolaciji.

Slika 39. Tlak pare prilikom ubrzanog toplog starta

Slika 40. Temperaturni profil stijenke prilikom ubrzanog toplog starta
Promjena temperaturnih naprezanja prikazana je na dijagramu na slici 41. Temperaturna naprezanja su veća za slučaj ubrzanog hladnog starta u pripadajućem vremenskom intervalu. Prema kraju simulacije temperaturna naprezanja se smanjuju, što je u skladu s dijagramom na slici 40, gdje se vidi da se temperature slojeva izjednačavaju.

Slika 41. Temperaturna naprezanja u stijenci kolektora prilikom ubrzanog toplih starta

Ukupna naprezanja po slojevima prikazana su na dijagramu na slici 42. U odnosu na neubrzan topli start, ova naprezanja su nešto veća u vremenskom intervalu koji je obuhvaćen povećanom brzinom promjene temperature.
Slika 42. Ukupna naprezanja u stijenci kolektora prilikom ubrzanog toplog starta

Razlike između dozvoljenih i izračunatih naprezanja u stijenci prikazane su na dijagramu na slici 43.

Slika 43. Razlike dopuštenog i izračunatog naprezanja prilikom ubrzanog toplog starta
Zaliha naprezanja za stijenku kolektora prikazana je na dijagramu na slici 44. Može se uočiti da čak i ubrzani topli start ostavlja dovoljno rezerve u pogledu dozvoljenog naprezanja.

Slika 44. Zaliha naprezanja za stijenku kolektora prilikom ubrzanog toplog starta

6.2.3. **Ubrzani vrući start**

Upuštanje termoenergetskog bloka iz vrućeg stanja ispitano je s ubrzanim promjenama tlaka i temperature. Promjene koje se odvijaju do 45. minute nisu mijenjane, budući da tek nakon tog vremena počinje puštanje pare na turbinu. Ukupno trajanje ubrzanog vrućeg starta je 60 minuta. Promjena temperature pare prikazana je na dijagramu na slici 45.
Slika 45. Temperatura pare prilikom ubrzanog vrućeg starta

Promjena tlaka prikazana je na dijagramu na slici 46.

Slika 46. Tlak pare prilikom ubrzanog vrućeg starta

Temperaturni profili stijenke u slučaju ubrzanog vrućeg starta prikazani su na dijagramu na slici 47.
Slika 47. Temperaturni profil stijenke prilikom ubrzanog vrućeg starta

Promjena temperaturnih naprezanja prikazana je na dijagramu na slici 48.

Slika 48. Temperaturna naprezanja u stijenci kolektora prilikom ubrzanog vrućeg starta
Ukupna naprezanja po slojevima prikazana su na dijagramu na slici 49. U odnosu na neubrzani vrući start, ova naprezanja su nešto veća u vremenskom intervalu koji je obuhvaćen povećanom brzinom promjene temperature.

Slika 49. Ukupna naprezanja u stijenci kolektora prilikom ubrzanog vrućeg starta

Razlike između dozvoljenih i izračunatih naprezanja u stijenci prikazane su na dijagramu na slici 50.
Slika 50. Razlike dopuštenog i izračunatog naprezanja prilikom ubrzanog vrućeg starta

Zaliha naprezanja za stijenku kolektor prikazana je na dijagramu na slici 51. Može se uočiti da čak i ubrzani vrući start ostavlja dovoljno rezerve u pogledu dozvoljenog naprezanja.

Slika 51. Zaliha naprezanja za stijenku kolektora prilikom ubrzanog vrućeg starta
6.3. Pogonski poremećaj

Provedena je simulacija u kojoj se kao poremećaj uvodi naglo otvaranje turbinskog ventila za 10%. U pogonskim uvjetima moguće su takve situacije u slučaju kada je potrebno privremeno povećati snagu na račun pada tlaka. Odziv tlaka prikazan je na dijagramu na slici 52.

![Diagram odziva tlaka za poremećaj otvaranja turbinskog ventila](image_url)

Slika 52. Odziv tlaka za poremećaj otvaranja turbinskog ventila

Temperatura najprije pada, a zatim raste, te se približava stacionarnom stanju. Odziv temperature prikazan je na dijagramu na slici 53.
Slika 53. Odziv temperature pare za poremećaj otvaranja turbinskog ventila

Temperature slojeva stijenke prate promjene temperature pare sa zakašnjenjem, kako je prikazano na dijagramu na slici 54.

Slika 54. Odziv temperature slojeva stijenke za poremećaj otvaranja turbinskog ventila

Budući da se mijenja predznak promjene temperature slojeva stijenke, temperaturna naprezanja isto mijenjaju predznak, kako je prikazano na dijagramu na slici 55.
Slika 55. Temperaturna naprezanja stijenke za poremećaj otvaranja turbinskog ventila

Ukupna naprezanja u stijenci prikazana su na dijagramu na slici 56.

Slika 56. Ukupna naprezanja stijenke za poremećaj otvaranja turbinskog ventila

Razlike između dozvoljenih naprezanja i izračunatih naprezanja prikazane su na dijagramu na slici 57.
Može se uočiti iz dijagrama da temperaturna naprezanja u svakom sloju dva puta promjene predznak. Razlike između dozvoljenih naprezanja i izračunatih u ovom slučaju su manje od situacije upuštanja u pogon. Razlog tome je visoka temperatura pare i stijenke kolektora (530 °C), a poznato je iz dijagrama da dozvoljeno naprezanje materijala naglo pada u području visokih temperatura.

Slika 57. Razlike dozvoljenih naprezanja i ukupnih naprezanja
7. ZAKLJUČAK

S obzirom na značaj koji imaju termoenergetska postrojenja, primjena matematičkog modeliranja na takvim primjerima ima svoju svrhu i u potpunosti je opravdana. Ovaj rad opisuje matematički model samo jedne od komponenti termoenergetske postrojenja. Opisan je pojednostavljeni model vodenoparnog trakta u generatoru pare. Potrebno je obratiti pažnju na činjenicu da je opisan značajno pojednostavljen matematički model. Diferencijalne jednadžbe kojima se izražavaju osnovni zakoni fluida bitno su pojednostavljeni. Takva pojednostavljenja nužna su zbog izvedivosti simulacije u realnim vremenskim okvirima predviđenim za ovaj rad.

Simulacije provedene u MATLAB-u odnose se na nekoliko promjena pogonskog stanja termoenergetske bloka snage 210 MW. Simulacije su bitno ograničene promjenama rubnih uvjeta, pa je neke intenzivnije promjene vrlo teško simulirati na izvedenom modelu. Dobiveni rezultati iskoristili su se za procjenu temperaturnih i ukupnih naprezanja u stijenci izlaznog kolektora pregrijača pare. Iskorišteni su podaci o promjenama parametara vodene pare za vrijeme upuštanja termoenergetske bloka u pogon. Za tri vrste upuštanja (hladni, topli i vrući start) izračunavana su naprezanja preko pojednostavljenog modela. Potrebno je naglasiti da pojednostavljeni model za izračunavanje temperaturnih i ukupnih naprezanja ne predstavlja stvarno stanje, već samo okvirne vrijednosti. Dobiveni rezultati naprezanja u skladu su s očekivanjima i kvalitativno su zadovoljavajući.

Drugi dio simulacija odnosio se na procjenu temperaturnih naprezanja za situaciju u kojoj su povećane brzine promjene parametara vodene pare za vrijeme upuštanja u pogon. Svrha tog dijela bila je procijeniti veličinu naprezanja i utvrditi postoje li realne mogućnosti za takve ubrzane promjene, a kao kriterij koristila se veličina dozvoljenog naprezanja materijala. Očekivanja su bila da će temperaturna naprezanja porasti u odnosu na neubrzan slučaj, budući da ovise o brzini promjene temperature stijenke. Temperaturna naprezanja su, kako je i bilo očekivano, porasla. Međutim, zaliha naprezanja nije se smanjila kako bi se na prvi pogled moglo očekivati. Razlog toga leži u činjenici da kod ubrzanog upuštanja nije proteklo dovoljno vremena da se stijenka progrije, za razliku od neubrzanog slučaja. Neprogrijanost nepovoljno djeluje na temperaturna naprezanja,
međutim niža temperatura neprogrijanih dijelova stijenke ima kao posljedicu veću vrijednost dozvoljenih naprezanja u tim dijelovima. Ako se nakon toga ne bi nametale daljnje promjene temperature i tlaka u sustavu, s vremenom bi se stijenka kolektora progrijala u potpunosti i temperaturna naprezanja bi iščezla. Simulacije ubrzanih promjena mogle bi se eventualno još ubrzati i na taj način doći do granice izdružljivosti materijala.

Kako bi se dobila potpuna slika, bilo bi potrebno uzeti u obzir sve kritične komponente sustava. Treba uzeti u obzir da su naprezanja u stijenci izlaznog kolektora bila jedini kriterij u simulacijama. Dobiveni rezultati nisu potkrijepljeni mjerenjima, a i zbog pojednostavljenog modela koji se upotrebljavao mogu imati samo pokazni karakter. Međutim, sve navedeno upućuje da postoje naznake za ostvarivanje većih gradijenata temperature pare prilikom upuštanja u pogon.

Tomislav Kovačić
LITERATURA

