DIPLOMSKI RAD

Mentor: Prof. dr. sc. Joško Deur, dipl. ing.

Student: Kristian Mirt

Zagreb, godina.
Izjavljujem da sam ovaj rad izradio samostalno služeci se stečenim znanjem tokom studija i navedenom literaturom.

Zahvaljujem prof. dr. sc. Jošku Deuru, dipl. ing. na ukazanom povjerenju prihvaćanjem mentorstva i vođenjem kroz ovaj rad.

Posebno zahvaljujem doc. dr. sc. Danijelu Pavkoviću na korisnim savjetima, te uloženom trudu i pomoći

Kristian Mirt
DIPLOMSKI ZADATAK

Student: Kristian Mirt
Mat. br.: 0035149938

Naslov rada na hrvatskom jeziku: Adaptivna regulacija servopogona s izraženim promjenama momenta inercije

Naslov rada na engleskom jeziku: Adaptive control of servodrive with emphasized variations of moment of inertia

Opis zadataka:
Regulirani elektromotorni servopogoni u industrijskim primjenama (npr. automatske spojke i pogoni za namatanje papira) podložni su promjenama momenta inercije, a čije je točno poznavanje ključno za postizanje visoke kvalitete vladanja servopogona. Radi stjecanja uvida u dinamičke efekte koje unosi promjena momenta inercije u dinamičko vladanje reguliranog servopogona, te adaptacije na promjenu momenta inercije u svrhu postizanja kvalitetne regulacije u ovom radu je potrebno učiniti sljedeće:
- Projektirati i implementirati klasičnu kaskadnu strukturu regulacije brzine vrtinje i pozicije servopogona, te naprednu strukturu regulatora brzine vrtinje zasnovanu na dualnom regulatoru i referentnom modelu,
- analizirati utjecaj promjene momenta inercije na dinamičko vladanje servopogona naprime algebarskim putem, te potom simulacijama na računalu za slučaj nagle i postupne promjene momenta inercije,
- opisati i implementirati na modelu zasnovani gradijentni MIT postupak adaptacije parametara regulatora servopogona za prethodno navedene strukture regulacije brzine vrtinje i pozicije,
- predložene adaptivne sustave regulacije ispitati simulacijama na računalu za slučajne skokovitih i postupnih (nagibnih) promjena reference brzine vrtinje i momenta tereta.

U radu, također, treba navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:
19. rujna 2013.

Rok predaje rada:

Predviđeni datum obrane:

Zadatak zadao:
Prof. dr. sc. Joško Deur

Predsjednik Povjerenstva:
Prof. dr. sc. Frano Cajner
SADRŽAJ

POPIS SLIKA: ... III

POPIS TABLICA: ... V

POPIS OZNAKA: .. VI

Sažetak ... VIII

1. Uvod ... 1

2. Objekt upravljanja – DC motor s nezavisnom i konstantnom uzbudom 2
 2.1. Matematički model ... 2

3. Neadaptivni sustavi regulacije .. 4
 3.1. Kaskadna struktura upravljanja istosmjernim motorom 4
 3.1.1 Krug regulacije struje armature .. 4
 3.1.2 Krug regulacije brzine vrtnje ... 7
 3.1.3. Krug regulacije pozicije ... 10
 3.2. Struktura regulacije brzinom vrtnje dualnim regulatorom i referentnim modelom .. 13
 3.2.1. Glavni regulator (P-tip) ... 14
 3.2.2. Pomoćni regulator (PI-tip) ... 15
 3.3. Analiza osjetljivosti neadaptivnih regulatora na naglu i postepenu promjenu momenta
 inercije. .. 21
 3.3.1. Kaskadna struktura ... 21
 3.3.2. Dualni regulator brzine vrtnje s referentnim modelom 27

4. Adaptivni sustavi regulacije ... 31
 4.1. M.I.T. pravilo ... 31
 4.2. Direktna adaptacija parametra K_{R2} – Klasična kaskadna struktura 32
 4.3. Direktna adaptacija parametara K_{RP} i K_{RI} – Dualni regulator 36
 4.4. Analiza osjetljivosti adaptivnih regulatora na naglu i postupnu promjenu momenta
 inercije .. 40
 4.4.1. Struktura s Klasičnim kaskadnim adaptivnim regulatorom 41
4.4.2. Struktura s Dualnim adaptivnim regulatorom ... 56
5. Zaključak ... 68
LITERATURA ... 70
Prilog 1. Usporedba odziva kaskadne strukture i strukture s dualnim regulatorom: 71
Prilog 2. Simulink model kaskadne strukture ... 72
Prilog 3. Simulink model kaskadne strukture kruga regulacije pozicije 73
Prilog 4. Simulink model dualne strukture: ... 74
Prilog 5. Simulink model adaptivne kaskadne strukture ... 75
Prilog 6. Simulink model strukture adaptivnog dualnog regulatora 76
Prilog 7. Simulink modeli PI regulatora ... 77
Prilog 8. Simulink model estimacije K_{R2} ... 78
Prilog 9. Simulink model estimacije K_{RP} ... 79
Prilog 10. Simulink model estimacije K_{R1} .. 80
Prilog 11. Primjer inicijalizacijske skripte u MATLAB-u ... 81
POPIS SLIKA:

Slika 1. Nadomjesna shema istosmjernog motora s permanentnom uzbudom .. 2
Slika 2. Blokovski dijagram istosmjernog motora s permanentnom uzbudom ... 3
Slika 3. Regulacijski krug struje armature s kompenzacijom elektromotorne sile 5
Slika 4. Regulacijski krug brzine vrtnje .. 7
Slika 5. Bodeov i Nyquistov dijagram simetričnog optimuma ... 9
Slika 6. Blokovski dijagram regulatora pozicije .. 10
Slika 7. Blokovski dijagram dualnog regulatora .. 13
Slika 8. Modificirani blokovski dijagram dualnog regulatora ... 14
Slika 9. Razdvajanje regulacijskog kruga na ekvivalentnu petlju povratne veze (feedback) i djelovanje u grani reference (feedforward) ... 15
Slika 10. Modelska dinamika za parametre $D2p = 0.5, D3 = 0.64$.. 19
Slika 11. Modelska dinamika za parametre $D2p = 0.4, D3 = 0.5$... 19
Slika 12. Prikaz realnog stanja odnosa $D2_r$ i $D3_r$ u ovisnosti o J/J_n ... 22
Slika 17. Prikaz realnog stanja odnosa $D2_r$ i $D3_r$ u ovisnosti o J/J_n .. 28
Slika 18. Neadaptivni dualni regulator - Nagla promjena inercije ... 29
Slika 19. Neadaptivni dualni regulator - postepena promjena inercije ... 30
Slika 20. Blok dijagram adaptivnog sustava sa referentnim modelom ... 31
Slika 21. Blok dijagram kaskadne regulacije brzine vrtnje s referentnim modelom 32
Slika 22. Modificirana slika 9, prikaz razlike izlaza modela i sustava ϵm 36
Slika 23. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 1, \omega R = $ 100 rad/s 41
Slika 24. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 1, \omega R =$ 100 rad/s 42
Slika 25. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 2, \omega R =$ 100 rad/s 43
Slika 26. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 2, \omega R = 100 \text{ rad/s}$

Slika 27. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 1, \omega R = 300 \text{ rad/s}$

Slika 28. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 1, \omega R = 300 \text{ rad/s}$

Slika 29. Adaptivna kaskadna struktura - Postepena promjena inercije $\gamma = 1, \omega R = 100 \text{ rad/s}$

Slika 30. Adaptivna kaskadna struktura - Postepena promjena inercije $\gamma = 1, \omega R = 100 \text{ rad/s}$

Slika 31. Adaptivna kaskadna struktura - Postepena promjena inercije $\gamma = 2, \omega R = 100 \text{ rad/s}$

Slika 32. Adaptivna kaskadna struktura - Postepena promjena inercije $\gamma = 2, \omega R = 100 \text{ rad/s}$

Slika 33. Adaptivna kaskadna struktura - Postepena promjena inercije $\gamma = 1, \omega R = 300 \text{ rad/s}$

Slika 34. Adaptivna kaskadna struktura - Postepena promjena inercije $\gamma = 1, \omega R = 300 \text{ rad/s}$

Slika 35. Adaptivni regulator pozicije - kaskada

Slika 36. Adaptivni regulator pozicije - kaskada

Slika 37. Adaptivna Dualna struktura - Nagla promjena inercije $\gamma_{KRP} = \gamma_{KRI} = 1$

$\omega R = 100 \text{ rad/s}$

Slika 38. Adaptivna dualna struktura - nagla promjena momenta inercije $\gamma_{KRP} = \gamma_{KRI} = 1$

$\omega R = 100 \text{ rad/s}$

Slika 39. Adaptivna Dualna struktura - Nagla promjena inercije $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5$

$\omega R = 100 \text{ rad/s}$

Slika 40. Adaptivna Dualna struktura - Nagla promjena inercije $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5$

$\omega R = 100 \text{ rad/s}$

Slika 41. Adaptivna dualna struktura - Nagla promjena inercije $\gamma_{KRP} = 0.2, \gamma_{KRI} = 0.05$

$\omega R = 300 \text{ rad/s}$

Slika 42. Adaptivna dualna struktura - Nagla promjena inercije $\gamma_{KRP} = 0.2, \gamma_{KRI} = 0.05$

$\omega R = 300 \text{ rad/s}$
Slika 43. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = \gamma_{KRI} = 1$
$\omega R = 100 \text{ rad/s}$.. 62

Slika 44. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = \gamma_{KRI} = 1$
$\omega R = 100 \text{ rad/s}$.. 63

Slika 45. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5$
$\omega R = 100 \text{ rad/s}$.. 64

Slika 46. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5$
$\omega R = 100 \text{ rad/s}$.. 65

Slika 47. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = 0.2, \gamma_{KRI} = 0.05$
$\omega R = 300 \text{ rad/s}$.. 66

Slika 48. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = 0.2, \gamma_{KRI} = 0.05$
$\omega R = 300 \text{ rad/s}$.. 67

POPIS TABLICA:

Tablica 1. Rezultati optimizacije tradicionalne strukture s PI regulatorom..........................20

Tablica 2. Rezultati sinteze Dualnog regulatora...25
POPIS OZNAKA:

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_a</td>
<td>V</td>
<td>Napon armature istosmjernog motora</td>
</tr>
<tr>
<td>u_{ems}</td>
<td>V</td>
<td>Napon elektromotorne sile</td>
</tr>
<tr>
<td>m_m</td>
<td>Nm</td>
<td>Moment motora</td>
</tr>
<tr>
<td>J</td>
<td>$kg\cdot m^2$</td>
<td>Ukupni moment inercije strani osovine motora</td>
</tr>
<tr>
<td>J_n</td>
<td>$kg\cdot m^2$</td>
<td>Nazivni moment inercije motora</td>
</tr>
<tr>
<td>m_L</td>
<td>Nm</td>
<td>Moment tereta</td>
</tr>
<tr>
<td>R_a</td>
<td>Ω</td>
<td>Otpor armature</td>
</tr>
<tr>
<td>i_a</td>
<td>A</td>
<td>Struja armature</td>
</tr>
<tr>
<td>s</td>
<td></td>
<td>Laplace-ov operator</td>
</tr>
<tr>
<td>T_a</td>
<td>s</td>
<td>Vremenska konstanta armature</td>
</tr>
<tr>
<td>K_a</td>
<td>$1/\Omega$</td>
<td>Konstanta motora</td>
</tr>
<tr>
<td>K_{ch}</td>
<td>V/V</td>
<td>Ekvivalentno pojačanje choppera</td>
</tr>
<tr>
<td>K_m</td>
<td>Nm/A</td>
<td>Pojačanje momenta</td>
</tr>
<tr>
<td>T_{ch}</td>
<td>s</td>
<td>Period chopper</td>
</tr>
<tr>
<td>f_{ch}</td>
<td>Hz</td>
<td>Sklopna frekvencija choppera</td>
</tr>
<tr>
<td>T_{11}</td>
<td>Nm</td>
<td>Vremenska konstanta PI regulatora struje</td>
</tr>
<tr>
<td>T_{12}</td>
<td>s</td>
<td>Vremenska konstanta PI regulatora brzine</td>
</tr>
<tr>
<td>T_e, T_{ep}, T_{eb}, T_{ew}, T_{ea}</td>
<td>s</td>
<td>Ekvivalentne vremenske konstante optimuma dvostrukog odnosa</td>
</tr>
<tr>
<td>T_{Σ}</td>
<td>s</td>
<td>Parazitska vremenska konstanta regulacije struje</td>
</tr>
<tr>
<td>$T_{\Sigma2}$</td>
<td>s</td>
<td>Parazitska vremenska konstanta regulacije brzine</td>
</tr>
<tr>
<td>$T_{\Sigma a}$</td>
<td>s</td>
<td>Parazitska vremenska konstanta regulacije položaja</td>
</tr>
<tr>
<td>T_S</td>
<td>s</td>
<td>Vrijeme uzorkovanja</td>
</tr>
<tr>
<td>K_{R1}</td>
<td>V/V</td>
<td>Pojačanje PI regulatora struje armature</td>
</tr>
<tr>
<td>K_{R2}</td>
<td>V/V</td>
<td>Pojačanje PI regulatora brzine vrtne</td>
</tr>
<tr>
<td>K_{RP}</td>
<td>V/V</td>
<td>Pojačanje glavnog regulatora dualne strukture</td>
</tr>
<tr>
<td>K_{RI}</td>
<td>V/V</td>
<td>Pojačanje pomoćnog PI regulatora</td>
</tr>
<tr>
<td>T_{RI}</td>
<td>s</td>
<td>Vremenska konstanta pomoćnog PI regulatora dualne strukture</td>
</tr>
<tr>
<td>D_{2i}, D_{2p}, D_2, D_3, D_{2o}, D_{3o}, D_{3b}, D_{2b}</td>
<td></td>
<td>Karakteristični odnosi optimuma dvostrukog odnosa</td>
</tr>
<tr>
<td>K_{ei}</td>
<td>A/V</td>
<td>Zamjensko pojačanje aproksimacije</td>
</tr>
</tbody>
</table>

VI
Kristian Mirt

Diplomski rad

VII

\(\omega \) \(\text{rad/s} \) brzina vrtnje motora

\(\omega_{R,pom} \) \(\text{rad/s} \) Vrijednost na izlazu iz pomoćnog PI regulatora

\(\omega^* \) \(\text{Nm} \) Vrijednost \(\omega_R + \omega_{R,pom} \) nakon sumatora u dualnoj strukturi

\(G_{ep}(s) \) Prijenosna funkcija glavne regulacijske petlje dualne strukture

\(G_R^*(s) \) Prijenosna funkcija pomoćnog PI regulatora brzine

\(G_m(s) \) Prijenosna funkcija referentnog modela

\(\omega_m \) \(\text{rad/s} \) Vrijednost na izlazu iz modela

\(G_c(s) \) Prijenosna funkcija zatvorenog regulacijskog kruga kaskadne strukture

\(G_{cD}(s) \) Prijenosna funkcija zatvorenog regulacijskog kruga dualnog regulatora

\(T_{er} \) \(\text{s} \) Vremenska konstanta s obzirom na realni \(J \)

\(D_{2r}, D_{3r} \) Karakteristični odnosi s obzirom na realni \(J \)

\(T_{ea} \) Vremenska konstanta regulatora položaja

\(K_{ca} \) Pojačanje regulatora položaja

\(K_{DA} \) \(\text{V} \) Ekvivalentno pojačanje D/A pretvornika

\(K_{a} \) \(\text{rad}^{-1} \) Ekvivalentno pojačanje inkrementalnog davača impulsa

\(G_{a1}(s) \) Prijenosna funkcija PI dijela dualnog regulatora pozicije

\(G_{aP}(s) \) Prijenosna funkcija P dijela dualnog regulatora pozicije

\(a_{c1}, a_{c2}, a_{c3} \) Koeficijenti karakteristične prijenosne funkcije dvostrukog odnosa

\(K_{\omega} \) \(\text{radV}^{-1}\text{s}^{-1} \) Nadomjesno pojačanje regulacijskog kruga brzine

\(\varepsilon_m \) Razlika izlaznog signala procesa i izlaznog signala modela

\(K_{a} \) \(\text{rad}^{-1} \) Ekvivalentno pojačanje inkrementnog davača impulsa

\(\hat{K}_{RP} \) Estimirani parametar \(K_{RP} \)

\(\hat{K}_{RI1} \) Estimirani parametar \(K_{RI1} \)

\(\hat{K}_{R2} \) Estimirani parametar \(K_{R2} \)
Sažetak

U ovom radu prikazane su dvije strukture regulacije brzine vrtnje istosmjernog motora servopogona s izraženim promjenama momenta inercije: klasična kaskadna struktura, te struktura zasnovana na dualnom regulatoru i referentnom modelu, te su tim strukturama prikazana su dva tipa regulatura : neadaptivni i adaptivni s obzirom na promjenu momenta inercije. Analitički izrazi za parametre neadaptivnog regulatora klasične kaskadne strukture izvedeni su prema simetričnom optimumu, dok su izrazi za parametre neadaptivnog dualnog regulatora izvedeni prema optimumu dvostrukog odnosa. Adaptivni regulator zasniva se na referentnom modelu sa strukturom izvedenoj prema M.I.T. pravilu... U svrhu simulacijske analize postavljeni su odgovarajući dinamički modeli motora i adaptivnog regulatora, te je uspoređeno dinamičko ponašanje regulirane vrijednosti brzine vrtnje i pozicije s navedenim neadaptivnim i adaptivnim regulatorima na skokovitu i postupnu promjenu momenta inercije.
1. Uvod

U praksi kaskadna struktura regulacije brzine i položaja servopogona počiva na primjeni proporcionalno-integralnog (PI) regulatora brzine vrtnje podešenog prema simetričnom optimumu i proporcionalnog regulatora položaja podešenog po optimumu dvostrukog odnosa. Naprednija struktura dualnog regulatora može se primjeniti kako bi se ubrzao odziv s obzirom na referentnu vrijednost brzine vrtnje, a zadržalo optimalno prigušenje. Dualni regulator sadrži P regulator brzine vrtnje s dodanim PI djelovanjem preko tzv. regulatora poremećaja koji djeluje na signal odstupanja regulacijskog kruga od referentnog modela. Navedeni regulatori brzine vrtnje koriste se u velikom dijelu primjena, kod kojih su su parametri pogona konstantni ili se ne mjenaju značajno.

Kod sustava s izraženim promjenom parametara, kao što su sustavi s izrazitom promjenom momenta inercije (strojevi za namatanje papira, automatske spojke), klasični regulatori s konstantnim parametrima ne postižu željeno (optimalno) ponašanje regulacijskog sustava. U takvim slučajevima potrebno je koristiti adaptivne regulatore, kod kojih se parametri regulatora u realnom vremenu prilagođavaju promjenama parametara pogona.

U ovom radu izvedene su gore navedene strukture regulatora u adaptivnom i neadaptivnom obliku, te se uspoređuju algebarski i simulacijama na računalu. Adaptivno upravljanje s referentnim modelom izabrano je radi jednostavnije primjene u u sustavu s dualnim regulatorom. Prema Karl Johan Astrom: Adaptive Control, poglavlje 5, izvedena je parametarska adaptacija s obzirom na promjenu momenta inercije.

U drugom poglavlju opisuje se objekt upravljanja, odnosno istosmjerni motor s nezavisnom i permanentnom uzbudom, te se daje njegov matematički model u obliku diferencijalnih jednadžbi i blokovskog dijagrama. Treće poglavlje se bavi neadaptivnom regulacijom pomoću klasične kaskadne strukture i naprednije strukture dualnog regulatora. Također je provedena algebarska i simulacijska analiza osjetljivosti regulacijskog sustava na izražene promjene inercije. U četvrтом poglavlju realizira se adaptivna regulacija za gore navedene strukture te provodi simulacijska provjera adaptivnog sustava s obzirom na skokovitu i postupnu promjenu momenta inercije. Zaključak rada sa smjernicama za budući rad dan je u petom poglavlju.
2. Objekt upravljanja – DC motor s nezavisnom i konstantnom uzbudom

Slika 1. Nadomjesna shema istosmjernog motora s permanentnom uzbudom

Istosmjerni strojevi su u području upravljenih elektromotornih pogona obilježili značajan dio prošlog stoljeća. Zahvaljujući njihovoj jednostavnosti u upravljačko-regulacijskom smislu te širokom opsegu upravljivosti brzine vrtnje, još i danas zauzimaju značajno mjesto u industrijskim primjenama. Značajan nedostatak istosmjernog stroja je mehanički komutator (izmjenjivač) koji ograničava snagu i brzinu motora, povećava cijenu, zahtijeva češće periodičko održavanje i otežava rad u ekstremnim (eksplozivnim) ambijentima.

Načelo upravljanja istosmjernim motorom zasniva se na promjeni napona armature, te popratnom i slabljenjem magnetskog toka ako se brzina vrtnje podešava i regulira iznad nazivne brzine vrtnje. U ovom radu koristi se istosmjerni motor s permanentnim magnetom, te se upravljanje zasnivana na promjeni armaturnog napona.

2.1. Matematički model

Armaturni strujni krug istosmjernog motora s nezavisnom i konstantnom uzbudom opisan je sljedećim diferencijalnim i algebarskim jednadžbama:\[1:\]

\[u_a = R_a i_a + L_a \frac{di_a}{dt} + u_{ems} \] (2.1)
\[u_{ems} = K_e \omega \] \hspace{1cm} (2.2)

\[m_m = K_m i_a \] \hspace{1cm} (2.3)

\[\frac{d\omega}{dt} = \frac{1}{J} (m_m - m_L), \] \hspace{1cm} (2.4)

gdje je \(J \) ukupna inercija pogona na strani osovine motora.

Primjenom Laplaceove transformacije na izraz 2.1 i 2.4 dobiju se sljedeći izrazi u \(s \)-području:

\[u_a(s) = R_a i_a(s) + L_a s i_a(s) + e_a(s) \] \hspace{1cm} (2.5)

\[\omega(s) = \frac{1}{J s} (m_m - m_L) \] \hspace{1cm} (2.6)

Sređivanjem izraza (2.5) te uvrštavanjem izraza \(T_a = \frac{L_a}{R_a} \), \(K_a = \frac{1}{R_a} \) dobijemo izraz za struju armature:

\[i_a(s) = \frac{K_a}{1 + T_a s} (u_a(s) - u_{ems}(s)) \] \hspace{1cm} (2.7)

Iz izraza (2.6) i (2.7) dobijemo blokovski dijagram istosmjernog motora:\[2]\):

\[\text{Slika 2. Blokovski dijagram istosmjernog motora s permanentnom uzbudom} \]

U modernim reguliranim pogonima istosmjerni motor se napaja iz tranzistorskog frekvencijskog pretvarača (eng. chopper) sklopne frekvencije \(f_{ch} \), čija dinamika se opisuje nadomjesnim PT\(1\) članom:

\[G_{ch}(s) = \frac{K_{ch}}{1 + T_{ch} s} \]

gdje je \(K_{ch} \) – ekvivalentno pojačanje, a \(T_{ch} = \frac{1}{f_{ch}} \).
3. Neadaptivni sustavi regulacije

3.1. Kaskadna struktura upravljanja istosmjernim motorom

Klasična kaskadna struktura upravljanja istosmjernim motorom uspostavlja se na 3 razine: razina regulacije momenta struje armature (upravljanje momentom), njemu nadređena razina regulacije brzine vrtnje, te brzini nadređena razina regulacije položaja. U ovome radu izvedeni su izrazi parametra regulatora struje i brzine vrtnje. Postupak sinteze regulatora klasične kaskadne strukture započinje podešavanjem podređenog kruga regulacije struje armature primjenom tehničkog optimuma pri čemu se ostvaruje najbrža moguća dinamika regulacijskog kruga uz dobro prigušenje. Nadređeni krug regulacije brzine vrtnje podešava se prema simetričnom optimumu, koji se može predstaviti kao specijalan slučaj općenitijeg optimuma dvostrukog odnosa\(^2\).

3.1.1 Krug regulacije struje armature

Kako bi se ubrzao odziv struje armature i kompenzirao utjecaj povratnog djelovanja elektromotorne sile, primjenjuje se PI regulator struje armature proširen kompenzatorom djelovanja elektromotorne sile. PI regulator se projektira uz pretpostavku da se elektromotorna sile (EMS) može smatrati sporim vanjskim poremećajem gdje regulator struje svojim integralnim djelovanjem kompenzira spore promjene inducirane elektromotorne sile. U slučaju niskog iznosa momenta inercije pogona \(J \), promjene elektromotorne sile mogu biti brze te je potrebno uključiti i odgovarajući kompenzator elektromotorne sile, čiji je ulaz brzina vrtnje motora. Blokovski dijagram podređenog kruga regulacije momenta tada dobiva sljedeći oblik:
Slika 3. Regulacijski krug struje armature s kompenzacijom elektromotorne sile

Kako je T_a dominantna vremenska konstanta, odziv zatvorenog regulacijskog kruga može se značajno ubrzati tako da se nulom regulatora $(1 + T_{I1}s)$ pokrati dominantna dinamika istosmjernog motora $(1 + T_a s)$. Odabire se $T_{I1} = T_a$ (tehnički optimum).

Postupak podešavanja pojačanja regulatora K_{R1} prema optimumu dvostrukog odnosa zasniva se na izjednačavanju karakterističnog polinoma prijenosne funkcije s karakterističnim polinomom optimuma dvostrukog odnosa\(^2\):

$$A(s) = 1 + T_e s + D_2 T_e^2 s^2 + \cdots + D_n D_{n-1}^2 \cdots D_2^{n-1} T_e^n s^n$$ \hspace{1cm} (3.1)

T_e – ekvivalentna vremenska konstanta (daje informaciju o brzini odziva)

D_i – karakteristični odnosi ($i = 1, 2, \ldots, n$), određuju prigušenje odziva

Postavljanjem svih karakterističnih odnosa na optimalni iznos $D_i = 0.5$ postiže se tzv. kvazi-aperiodski odziv regulacijskog kruga sa 6% nadvišenja u odzivu, te vremenom porasta $t_{100\%} \approx 2.1 T_e$\(^2\).
U svrhu pojednostavljenja sinteze parazitska dinamika regulacijskog kruga struje koja uključuje dinamiku pretvarača i senzora struje \((T_{ch}, T_i << T_a)\) aproksimira se ekvivalentnim \(PT_1\) članom:

\[
G_{par} = \frac{K_{ch} K_i}{1 + T_{ch}s} \approx \frac{K_{ch} K_i}{1 + (T_{ch} + T_i)s} = \frac{K_{ch} K_i}{1 + T_x s}
\] \(\text{(3.2)}\)

Prijenosna funkcija regulacijskog kruga struje poprima sljedeći oblik:

\[
G_i(s) = \frac{i_a}{i_{ar}} = \frac{1}{1 + \frac{T_{i1}}{K_{R1} K_{ch} K_i K_a} s + \frac{T_{i1} T_x}{K_{R1} K_{ch} K_i K_a} s^2}
\] \(\text{(3.3)}\)

Taj se izraz izjednačava s karakterističnim polinomom dvostrukog odnosa:

\[
G_{ei}(s) = \frac{1}{1 + T_{ei} s + D_{2i} T_{ei}^2 s^2}
\] \(\text{(3.4)}\)

Nakon pojednostavljanja izrazi za ekvivalentnu vremensku konstantu zatvorenog regulacijskog kruga i za optimalno pojačanje regulatora glase:

\[
T_{ei} = \frac{T_x}{D_{2i}}
\] \(\text{(3.5)}\)

\[
K_{R1} = \frac{T_{i1}}{T_x} \frac{D_{2i}}{K_{ch} K_i K_a}
\] \(\text{(3.6)}\)

što za vrijednost \(D_{2i} = 0.5\) odgovara:

\[
T_{ei} = 2T_x
\] \(\text{(3.7)}\)

\[
K_{R1} = \frac{T_{i1}}{T_x} \frac{1}{2K_{ch} K_i K_a}
\] \(\text{(3.8)}\)
3.1.2 Krug regulacije brzine vrtnje

Ukoliko je regulator struje podešen za kvazi-aperiodski odziv, vladanje regulacijskog kruga struje može se aproksimirati proporcionalnim članom prvog reda (PT₁). Nadomjesni PT₁ član ima sličnu brzinu odziva i vrijeme smirivanja, a nadređeni krug regulacije brzine vrtnje zbog utjecaja inercije ionako je tromiji od unutarnjeg kruga regulacije struje pa ne reagira na više harmonike u promjeni vrijednosti struje.

\[G_{el}(s) = \frac{1}{1 + T_{el}S + D_{2i}T_{ei}^2S^2} \approx \frac{1}{1 + T_{el}S} \quad (3.8) \]

Za potrebe sinteze regulacijskog kruga brzine vrtnje, regulacijski krug struje opisuje se sljedećom prijenosnom funkcijom:

\[G_{el}(s) = \frac{1}{K_i} \frac{1}{1 + T_{el}S} = \frac{K_{el}}{1 + T_{el}S} \quad (3.9) \]

Blokovski dijagram regulacije brzine vrtnje poprima sljedeći oblik:

![Blokovski dijagram regulacije brzine vrtnje](image)

Slika 4. Regulacijski krug brzine vrtnje

Kao i kod podređenog kruga regulacije struje, i ovdje se u svrhu pojednostavljenja parazitska dinamika regulacijskog kruga struje i senzora brzine vrtnje \((T_{ei}, T_s)\) aproksimira sljedećim nadomjесnim PT₁ članom\(^2\):

1
Parazitska vremenska konstanta regulacijskog kruga brzine vrtnje

Slijedi izraz za prijenosnu funkciju regulacijskog kruga brzine vrtnje:

\[
\frac{\omega(s)}{\omega_R(s)} = \frac{1}{1 + T_{l2}s + \frac{T_{l2}}{K_{R2}K_mK_{ei}}s^2 + \frac{T_{l2}J}{K_{R2}K_mK_{ei}}} \frac{1}{s^3}
\]

(3.11)

Iz slike 4 vidljivo je da sustav ima nulu \(1 + T_{l2}s\). Da bi se izbjegao (pokratio) utjecaj te nule (koja rezultira povećanjem nadvišenjem odziva od približno 45%), u grani reference brzine stavlja se prefilter čija je prijenosna funkcija \([3^{[2]}]\).

\[G_V(s) = \frac{1}{1 + T_{l2}s}\]

Karakteristični polinom prijenosne funkcije zatvorenog regulacijskog kruga brzine vrtnje izjednačava se s karakterističnim polinomom optimuma dvostrukog odnosa:

\[A_c(s) = 1 + T_{l2}s + \frac{T_{l2}}{K_{R2}K_mK_{ei}}s^2 + \frac{T_{l2}J}{K_{R2}K_mK_{ei}}s^3\]

(3.12)

\[A(s) = 1 + T_{eb}s + D_{2b}T_{eb}^2s^2 + D_{3b}D_{2b}^2T_{eb}^3s^3\]

(3.13)

što daje sljedeće izraze:

\[T_{eb} = T_{l2}\]

(3.14)

\[D_{2b}T_{eb}^2 = \frac{T_{l2}J}{K_{R2}K_mK_{ei}}\]

(3.15)

\[D_{3b}D_{2b}^2T_{eb}^3 = \frac{T_{l2}J}{K_{R2}K_mK_{ei}}\]

(3.16)

Dijeljenjem izraza 3.16 s izrazom 3.15 te uvrštavanjem izraza 3.14 dobiva se izraz:

\[T_{eb} = \frac{T_{\Sigma2}}{D_{3b}D_{2b}}\]

(3.17)
Zatim se dijeli izraz 3.15 sa izrazom 3.14, te se uvrštavanjem izraza 3.17 dobiva:

\[K_{R2} = \frac{D_{3b} J}{T_{\Sigma 2} K_m K_{el}} \]
(3.18)

Za vrijednosti \(D_{3b} = D_{2b} = 0.5 \) dobiva se:

\[K_{R2} = \frac{1}{2} \frac{1}{K_m K_{el}} \frac{J}{T_{\Sigma 2}} \]
(3.19)
\[T_{I2} = 4 T_{\Sigma 2} \]
(3.20)

Ovaj način podešavanja se zove i simetrični optimum, a njegova optimalnost se često ilustrira u frekvencijskoj domeni Bodeovim i Nyquistovim dijagramima za otvoren regulacijski krug[2]:

\[G_{\infty}(j\Omega) = \frac{-K_{R2} K_{el} K_m}{J} \frac{1 + J \Omega T_{I2}}{1 + J \Omega T_{\Sigma 2}} \]

Slika 5. Bodeov i Nyquistov dijagram simetričnog optimuma

Za dani izbor integralne vremenske konstante \(T_{I2} \), pojačanje regulatora \(K_{R2} \) mora biti takvo da su lomne frekvencije \(\frac{1}{T_{I2}} \) i \(\frac{1}{T_{\Sigma 2}} \) amplitudno-frekvenčne karakteristike simetrično raspoređene oko presječne frekvencije \(\omega_c \), a što odgovara maksimalnom iznosu fazne rezerve \(\gamma = 37^\circ \).

Za ispravan rad PI regulatora, naročito pri velikim promjenama referentne vrijednosti, nije dovoljno samo limitirati izlaz regulatora, već i ograničiti stanje integratora, koje može
zbog integriranja regulacijske pogreške e_ω postići visoke vrijednosti. Navedeni efekt se zove prenabijanje integratora (engl. *integrator windup*). U postupku sinteze kaskadnog regulatora primijenjeno je, radi jednostavnosti, zaustavljanje integriranja (engl. *integrator hold*) ukoliko je suma proporcionalnog i integrirajućeg djelovanja izvan limita. U tablici 1 su prikazani rezultati sinteze PI regulatora. Simulink model za simulacijsku analizu vladanja regulacijskog sustava tradicionalne regulacije brzine vrtnje s PI regulatorom nalazi se u prologu 2

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
D_{2i} & T_{11} & K_{R1} & D_{2b} & D_{3b} & T_{12} & K_{R2} \\
\hline
0.5 & 0.006 & 0.0779 & 0.5 & 0.5 & 0.0098 & 1.4414 \\
\hline
\end{array}
\]

Tablica 1. Rezultati optimizacije tradicionalne strukture s PI regulatorom

3.1.3. Krug regulacije pozicije

Podrazumijeva se digitalna kaskadna regulacija položaja (pozicije), odnosno regulator položaja implementira se kao vremenski diskretni (digitalni) regulator. Odabire se proporcionalni (P) regulator položaja jer statičku točnost osigurava integracijsko djelovanje samog objekta upravljanja\(^2\), a eventualni utjecaj poremećaja (momenta tereta) rješava podređeni regulator brzine vrtnje.

Slika 6. Blokovski dijagram regulatora pozicije
Regulator položaja je, osim svojim pojačanjem \(K_{\text{ca}} \), karakteriziran dodatnim parametrom, vremenom uzorkovanja (diskretizacije u vremenu) \(T_d \). Utjecaj vremenski diskretnog mjerenja pozicije i izvršavanja regulacijskog algoritma uzima se u obzir preko parazitskog dinamičkog člana 1. reda (PT\(_1\) člana) s vremenskom konstantom jednakom polovici vremena uzorkovanja \(\frac{T_d}{2} \).

Inkrementalni davač impulsa s \(N_K \) impulsa po kanalu nadomješta se ekvivalentnim pojačanjem:

\[
K_\alpha = \frac{N_{\text{imp}}}{2\pi} \tag{3.21}
\]

gdje je:

- \(N_{\text{imp}} \) broj impulsa po okretaju; uzima se \(N_K \) ako nema učetverostručenja frekvencije, a \(4N_K \) ako se rabi učetverostručenje.

Bipolarni D/A pretvornik s \(N \)-bitova rezolucije također se nadomješta ekvivalentnim pojačanjem:

\[
K_{DA} = \frac{2U_{DA,max}}{2^N} \tag{3.22}
\]

gdje je:

- \(2U_{DA,max} \) simetričan raspon izlaznih napona D/A pretvornika od \(-U_{DA,max} \) do \(+U_{DA,max} \)
- \(2^N \) – Puni raspon vrijednosti

Također se mora pripaziti na kriterij za izbor vremena uzorkovanja:

\[
T_d \approx \frac{1}{3} T_{\Sigma 2}
\]

Značajno manji iznos vremena ne bi bitno poboljšao kvalitetu regulacije, ali bi se povećala osjetljivost regulacijskog kruga na utjecaj šuma. Veći iznosi vremena uzorkovanja mogu prouzročiti probleme s tzv. „aliasingom“ [EMS].
Za potrebe sinteze regulacijskog kruga pozicije nadomjesna dinamika podređenog regulacijskog kruga pozicije, nadomjesna dinamika regulacijskog kruga brzine vrtnje i parazitska dinamika uslijed efekta uzorkovanja se objedinjuju i aproksimiraju jedinstvenim aperiodskim članom prvog reda:

\[
G_{\text{par}} = \frac{1}{1 + T_{\Sigma 2} s} \frac{1}{1 + \frac{T_d}{2} s} \approx \frac{1}{1 + \left(T_{\Sigma 2} + \frac{T_d}{2} \right) s} = \frac{1}{1 + T_{\Sigma 2} s}
\]

(3.23)

Pojačanje P regulatora položaja određuje se primjenom kriterija optimuma dvostrukog odnosa na prijenosnu funkciju zatvorenog regulacijskog kruga položaja:

\[
\frac{\alpha_m(s)}{\alpha_r(s)} = \frac{1}{1 + \frac{1}{K_{ca} K_{eo} K_{DA}} s + \frac{T_{\Sigma 2}}{K_{ca} K_{eo} K_{DA}} s^2}
\]

(3.24)

gdje je \(K_{eo} = 1/K_\omega \) nadomjesno pojačanje regulacijskog kruga brzine.

Karakteristični polinom prijenosne funkcije zatvorenog regulacijskog kruga položaja:

\[
A_c(s) = 1 + \frac{1}{K_{ca} K_{eo} K_{DA}} s + \frac{T_{\Sigma 2}}{K_{ca} K_{eo} K_{DA}} s^2
\]

(3.25)

izjednačuje se sa karakterističnim polinomom optimuma dvostrukog odnosa:

\[
A(s) = 1 + T_{ea} s + D_{2a} T_{ea}^2 s^2
\]

(3.26)

Sljedećo tome pojačanje regulatora dobiva se rješavanjem sljedeće jednadžbe:

\[
\frac{D_{2a} T_{ea}^2}{T_{ea}^2} = \frac{T_{\Sigma 2}}{K_{ca} K_{eo} K_{DA}} \frac{1}{(K_{ca} K_{eo} K_{DA})^2}
\]

(3.27)

Nakon sređivanja izraz za pojačanje regulatora položaja glasi:

\[
K_{ca} = \frac{D_{2a}}{T_{\Sigma 2} K_{ca} K_{eo} K_{DA}} \frac{1}{K_{ca} K_{eo} K_{DA}}
\]

(3.28)

Kako bi se umanjio utjecaj pogrešaka modeliranja podređenog regulacijskog kruga brzine vrtnje, karakteristični odnos \(D_{2a} \) se postavlja na nešto niži iznos \(D_{2a} = 0.32 - 0.35 \).

Rezultati sinteze regulatora pozicije: \(K_{ca} = 4.46697 \), \(T_{ea} = 0.0336 \). Simulink model kaskadne regulacije pozicije dan je u prilogu 3.
3.2. Struktura regulacije brzinom vrtne dualnim regulatorom i referentnim modelom

Regulacijskom strukturom s dualnim regulatorom i referentnim modelom (slika 8.) pokušava se ubrzati odziv zatvorenog kruga u odnosu na referencu time tako da će glavni regulator sadržavati samo P djelovanje. Poremećaj na djelovanje momenta tereta se kompenzira PI regulatorom koji djeluje na razliku izlaznog signala referentnog modela i mjerene brzine vrtne. Ovakvom strukturom regulatora može se postići dvostruko brži odziv na promjenu referentne vrijednosti brzine, a da se istovremeno očuva dobro prigušenje odziva. [3]

![blokoviški_dijagram_dualnog_regulatora]

Slika 7. Blokoviški dijagram dualnog regulatora

Sinteza unutarnje regulacijske petlje struje ostaje ista kao i kod kaskadne strukture te i zamjenska vremenska konstanta T_{ei} zadržava isti iznos dan izrazom 3.8. Referentni model može biti pojednostavljeni model 1.reda ili potpuniji model 2.reda.

$G_m(s) = \begin{cases}
\frac{1}{1+T_{eo}s + D_{2eo}T_{eo}^2s} & \text{za referentni model 2. reda} \\
\frac{1}{1+T_{eo}s} & \text{za referentni model 1. reda}
\end{cases}$
Radi pojednostavljenja sinteze regulatora tzv. parazitska dinamika mjernih članova brzine i dinamika unutarnje regulacijske petlje struje aproksimira se ekvivalentnim PT\(_1\) članom.

\[
G_{par} = \frac{1}{1 + T_{ei}s} \frac{1}{1 + T_s}s \approx \frac{1}{1 + (T_{ei} + T'_s)s} = \frac{1}{1 + T_{e2}s}
\] (3.29)

Uzvješću u obzir aproksimaciju parazitnih vremenskih konstanti modificira se blok dijagram radi pojednostavljenja sinteze:

Slika 8. Modificirani blokovski dijagram dualnog regulatora

Iz slike 9. zaključuje se da se „unutarna“ glavna regulacijska petlja s P regulatorom može zasebno optimizirati prema optimumu dvostrukog odnosa, a potom provesti sintezu nadređene petlje s PI regulatorom (kompenzatorom poremećaja).

3.2.1. Glavni regulator (P - tip)

\[
\frac{\omega(s)}{\omega^*_R(s)} = \frac{K_{RP}K_m}{Js(1 + T_{e2}s)} = \frac{1}{1 + \frac{Js}{K_{RP}K_m} + \frac{T_{e2}Js^2}{K_{RP}K_m}}
\] (3.30)

Izjednačavanjem s karakterističnim polinomom optimuma dvostrukog odnosa (koji se ovdje koristi i kao referentni model sustava):

\[
\frac{\omega(s)}{\omega^*_R(s)} = \frac{1}{1 + T_{ep}s + D_{2p}T_{ep}^2s^2}
\] (3.31)
dobije se:

\[T_{ep} = \frac{T_{\Sigma 2}}{D_{2p}} = \frac{J}{K_{RP}K_m} \] \hspace{1cm} (3.32)

\[K_{RP} = \frac{J}{T_{ep}K_m} = \frac{D_{2p}J}{K_mT_{\Sigma 2}} \] \hspace{1cm} (3.33)

3.2.2. Pomoćni regulator (PI - tip)

Za potrebe optimiranja pomoćnog PI regulatora, blok dijagram na slici 8 se dodatno modificira, kako je prikazano na slici 9.

Prema slici 8. izvode se sljedeći izrazi:

\[\omega(s) = G_{ep}(s)(\omega_R(s) - \omega_{R,p,om}(s)) \] \hspace{1cm} (3.34)

\[\omega_{R,p,om}(s) = G_R^*(s)(G_m(s)\omega_R(s) - \omega(s)) \] \hspace{1cm} (3.35)

Izraz 3.35 se zatim uvrštava u izraz 3.34 i nakon pojednostavljanja dobije se:

\[\omega(s) = \frac{G_{ep}(s) + G_R^*(s)G_m(s)G_{ep}(s)}{1 + G_R^*(s)G_{ep}(s)} \omega_R(s) \] \hspace{1cm} (3.36)

\[= \frac{G_{ep}(s)}{1 + G_R^*(s)G_{ep}(s)} (1 + G_R^*(s)G_m(s)) \]

Iz izraza 3.36 vidljivo je da se sustav može razdvojiti na ekvivalentnu petlju povratne veze (feedback) i ekvivalentno djelovanje po signalu referentnog modela, kako je prikazano na slici 9.:
Iz izraza 3.36 vidljivo je da će karakteristični polinom zatvorenog regulacijskog kruga biti dan sljedećim izrazom:

\[A_c(s) = 1 + G_h(s)G_{ep}(s) = 1 + \frac{K_{RI}}{K_{RP}} \frac{1 + T_{RI}s}{T_{RI}s} \left(1 + \frac{1}{1 + \frac{J}{K_{RP}K_m}s + \frac{T_{\Sigma}J}{K_{RP}K_m}s^2} \right) \]

koji nakon pojednostavljivanja postaje:

\[A_c(s) = K_{RI} \left[1 + T_{RI} \frac{K_{RP} + K_{RI}}{K_{RI}} s + \frac{J T_{RI}}{K_m K_{RI}} s^2 + \frac{J T_{RI} T_{\Sigma} J}{K_m K_{RI}} s^3 \right] \quad (3.37) \]

Izjednačavanje s karakterističnim polinomom dvostrukog odnosa:

\[A_c(s) = 1 + T_e s + D_2 T_e^2 s^2 + D_3 D_2^2 T_e^3 s^3 \quad (3.38) \]

daje sljedeće izrake:

\[T_e = \frac{K_{RP} + K_{RI}}{K_{RI}} T_{RI} \quad (3.39) \]
\[D_2 T_e^2 = \frac{J T_{RI}}{K_m K_{RI}} \quad (3.40) \]
\[D_3 D_2^2 T_e^3 = \frac{J T_{RI} T_{\Sigma} J}{K_m K_{RI}} \quad (3.41) \]

Dijeljenje izraza 3.40 s izrazom 3.41 daje sljedeći izraz za nadomjesnu vremensku konstantu cjelokupnog regulacijskog kruga:

\[T_e = \frac{T_{\Sigma} J}{D_3 D_2} \quad (3.42) \]

Pojačanje pomoćnog PI regulatora dobiva se kombiniranjem izraza 3.39 i 3.40:

\[K_{RI} = \frac{J}{D_2 K_m T_e} - \frac{D_2 p J}{K_m T_{\Sigma 2}} \quad (3.43) \]

Daljnjim pojednostavljenjem i uvrštavanjem izraza 3.32 dobiva se konačan izraz:

\[K_{RI} = \frac{J}{K_m} \left[\frac{1}{D_2 T_e} - \frac{1}{T_{ep}} \right] \quad (3.44) \]

Krenuvši od izraza 3.39, uvrštavanje \(T_e, K_{RI}, K_{RP} \) i supstitucija \(T_{\Sigma 2} = D_2 T_{ep} \) daju:

\[T_{RI} = T_e \left(1 - \frac{D_2 T_e}{T_{ep}} \right) \quad (3.45) \]
Iz izraza 3.45. vidljivo je da su izrazi za parametre pomoćnog PI regulatora vezani uz podešenje glavnog P regulatora. Naime izrazi (3.44) i (3.45) nam moraju biti veći od 0 (pozitivni parametri regulatora), tj. za oba slučaja mora vrijediti: $T_{ep} > D_2T_e$, odnosno:

$$T_e < \frac{T_{ep}}{D_2}$$

Odatle sljedi (uzimajući u obzir 3.42 i 3.32) da je uvjet realizacije moguće ostvariti na dva načina:

1. Smanjivanjem iznosa karakterističnog odnosa D_{2p} (u sintezi glavne regulacijske petlje) na iznos manji od optimalnog ($D_{2p} < 0.5$):

$$D_{2p} = \frac{D_3D_2T_e}{T_{ep}} < 0.5 \text{ za } T_e > 0 \quad (3.46)$$

ili

2. Povećavanjem iznosa karakterističnog odnosa D_3 (u sintezi pomoćnog regulacijskog kruga) dok D_{2p} ostaje na optimalnom iznosu, da se očuva prigušenje dominantne dinamike:

$$D_3 = \frac{D_{2p}T_{ep}}{D_2T_e} > 0.5 \text{ za } T_e > 0 \quad (3.47)$$

U tablici 2 prikazani su rezultati sinteze dualnog regulatora:

<table>
<thead>
<tr>
<th>D_{2p}</th>
<th>T_{ep}</th>
<th>K_{RP}</th>
<th>$T_{e\omega}$</th>
<th>D_2</th>
<th>D_3</th>
<th>T_e</th>
<th>K_{RI}</th>
<th>T_{RI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.0049</td>
<td>1.4414</td>
<td>T_{ep}</td>
<td>0.5</td>
<td>0.64</td>
<td>0.0076</td>
<td>0.436</td>
<td>0.0017</td>
</tr>
<tr>
<td>0.4</td>
<td>0.0061</td>
<td>1.1531</td>
<td>T_{ep}</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0098</td>
<td>0.2883</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Tablica 2. Rezultati sinteze dualnog regulatora

U svrhu algebarske analize regulacijskog sustava raspisuju se prijenosne funkcije brzine vrtnje s obzirom na referentnu vrijednost brzine ω_R i poremećaj (moment tereta m_ℓ):

- S obzirom na referentni model prvog reda:
S obzirom na referentni model drugog reda:

\[G_{cD}(s) = \frac{\omega}{\omega_R} \]

\[= \frac{1 + \left(1 + \frac{K_{RP}}{K_{RI}} \right) T_{RI}s + \frac{K_{RP}T_{ep}T_{RI}}{K_{RI}}s^2}{\left(1 + T_{ep}s \right) \left[1 + \left(1 + \frac{K_{RP}}{K_{RI}} \right) T_{RI}s + \frac{J_{T_{RI}}}{K_{RI}K_m}s^2 + \frac{J_{T_{RI}T_{S}}}{K_{RI}K_m} s^3 \right]} \]

U izrazu (3.49) uz nominalne iznose parametara procesa, nakon uvrštavanja izraza (3.32) i sređivanja dobije se sljedeći rezultat:

\[G_{cD}(s) = \frac{1 + \left(1 + \frac{K_{RP}}{K_{RI}} \right) T_{RI}s + \frac{J_{T_{RI}}}{K_{RI}K_m}s^2 + \frac{J_{T_{RI}T_{S}}}{K_{RI}K_m} s^3}{\left(1 + T_{ep}s + D_{2p}T_{ep}s^2 \right) \left[1 + \left(1 + \frac{K_{RP}}{K_{RI}} \right) T_{RI}s + \frac{J_{T_{RI}}}{K_{RI}K_m}s^2 + \frac{J_{T_{RI}T_{S}}}{K_{RI}K_m} s^3 \right]} \]

Odnosno vladanje zatvorenog regulacijskog kruga brzine vrtnje s obzirom na referencu poklapa se s modelskom dinamikom:

\[G_m(s) = \frac{1}{\left(1 + T_{ep}s + D_{2p}T_{ep}s^2 \right)} \]

Prijenosna funkcija s obzirom na poremećaj (moment tereta) dana je sljedećim izrazom:

\[G_{om}(s) = \frac{\omega_m(s)}{m_L(s)} \]

\[= -\frac{1}{K_{RI}K_m} \frac{T_{RI}s(1 + T_{S}s)}{1 + \left(1 + \frac{K_{RP}}{K_{RI}} \right) T_{RI}s + \frac{J_{T_{RI}}}{K_{RI}K_m}s^2 + \frac{J_{T_{RI}T_{S}}}{K_{RI}K_m} s^3} \]
Prijenosna funkcija $G_{\omega \omega}$ i $G_{\omega m}(s)$ na skokovitu promjenu ulaza u ovisnosti o parametru D_2p i D_3 prikazana je na slikama 10 i 11:

Slika 10. Modelska dinamika za parametre $D_2p = 0.5$, $D_3 = 0.64$

Slika 11. Modelska dinamika za parametre $D_2p = 0.4$, $D_3 = 0.5$

Iz priloženih slika modelske dinamike vidljivo je da $D_2p = 0.5$, $D_3 = 0.64$ daju brži odziv regulacijskog sustava na skokovite promjene referentne vrijednosti, i udarnog opterećenja dok podešenje $D_2p = 0.4$, $D_3 = 0.5$ daje manje oscilatoran odziv. Regulacijski
krug s jačim prigušenjem može biti pogodniji u prisustvu pogrešaka modeliranja objekta upravljanja.

Simulink model za simulacijsku analizu vladanja regulacijskog sustava s dualnim regulatorom je prikazan u prilogu 4.
3.3. Analiza osjetljivosti neadaptivnih regulatora na naglu i postepenu promjenu momenta inercije.

3.3.1. Kaskadna struktura

Algebarska analiza

Pretpostavljeno je da izvedeni izrazi 3.17, 3.18, 3.20 vrijede za nominalni iznos ukupne vrijednosti momenta inercije, ovdje se preispituju za \(J = J_n \). Takvi nominalni parametri regulatora uvršteni su u karakteristični polinom prijenosne funkcije zatvorenog regulacijskog kruga brzine vrtnje (izraz 3.13) kako bi se dobio uvid ovisnosti karakterističnih odnosa \(D_2 \) i \(D_3 \) na omjer realne i nominalne vrijednosti momenta inercije.

\[
T_{eb} = \frac{T_{\Sigma 2}}{D_3bD_2b} \\
K_{R2} = \frac{D_3b J_n}{T_{\Sigma 2} K_m K_{ei}} \\
T_{I2} = 4 T_{\Sigma 2}
\]

Izrazi za parametre regulatora ukazuju jedino na ovisnost parametra \(K_{R2} \) o momentu inercije. Uvrštavanjem 3.17 i 3.18 u 3.12, uzevši u obzir da je \(T_{I2} = T_{eb} \) i karakteristični polinom ima oblik:

\[
\frac{1}{A_c} = \frac{1}{1 + a_{c1}s + a_{c2}s^2 + a_{c3}s^3}
\]

oblik: \((3.51) \)

dobiveni su izrazi za koeficijente karakterističnog polinoma:

\[
a_{c1} = \frac{T_{\Sigma 2}}{D_3bD_2b}
\]

\((3.52) \)
Izjednačivanjem dobivenih izraza s karakterističnim polinomom dvostrukog odnosa

\[A(s) = 1 + T_{er}s + D_{2r}T_{er}^2s^2 + D_{3r}T_{er}^3s^3 \]

dobijemo sljedeće izraze za nadomjesne vremenske konstante karakteristične odnose dvostrukog odnosa:

\[T_{er} = a_{c1} = \frac{T_{\Sigma 2}}{D_{3b}D_{2b}} \] \hspace{1cm} (3.55)

\[D_{2r} = \frac{a_{c2}}{a_{c1}^2} = \frac{D_{2b}J_n}{J} \] \hspace{1cm} (3.56)

\[D_{3r} = \frac{a_{c1}a_{c3}}{a_{c2}^2} = \frac{D_{3b}J_n}{J} \] \hspace{1cm} (3.57)

Slika 12. Prikaz realnog stanja odnosa D_{2r} i D_{3r} u ovisnosti o J/J_n

Iz slike 12. se vidi da se vrijednosti karakterističnih odnosa D_{2} i D_{3} mjenaju u odnosu na promjenu momenta inercije. Zbog pomaka tih odnosa van idealnih 0.5 može doći do
nestabilnog ili neprigušenog ponašanja sustava pri promjeni ukupne inercije. Karakterističan odnos D_2 se mjenja proporcionalno s omjerom J/J_n te u slučaju povećanja momenta inercije dolazi do povećanja D_2 iznad 0.5, te oscilacije dominantne dinamike sustava (nižim frekvencijama), s druge strane odnos D_3 mijenja se obrnuto proporcionalno s J/J_n, što daje $D_3 > 0.5$ pri smanjenju momenta inercije, te u tom slučaju daje manje dominantne oscilacije (one više frekvencije)

Simulacijska analiza

Skokovita promjena momenta inercije – rezultat simulacije na skokovitu promjenu momenta inercije od 5J na kraju prve sekunde simulacije.

![Simulacijska analiza](image)

Iz slike 13 se može zaključiti da kaskada uspijeva stabilizirati sustav s naglim povećanjem momenta inercije, uz znatno oscilatorniji odziv. Prebačaj prelazi 35%, te je vrijeme smirivanja signala oko 0.35 sekundi.

Postupna promjena momenta inercije – rezultat simulacije na promjenu momenta inercije od J do $5J$, od prve do pete sekunde

Slika 14. Neadaptivni regulator - kaskada, krug reg. brzine - Postepena promjena inercije

Kao i u slučaju sa skokovitom promjenom inercije, na slici 14 vidljivo je pogošanje ponašanja sustava s povećanjem momenta inercije. Regulator s nominalnim parametrima uspijeva održati stabilnost sustava, ali ako se moment inercije nastavlja povećavati moglo bi doći do znatne destabilizacije i gubitka kvalitetnog praćenja referentne vrijednosti.
Simulacijska analiza regulacijskog kruga pozicije

Skokovita promjena momenta inercije – rezultat simulacije na skokovitu promjenu momenta inercije od 5J na kraju prve sekunde simulacije

Slika 15. Neadaptivni regulator - kaskada, krug reg. pozicije – Skokovito povećanje inercije

Algebarski izračun regulatora pozicije je pokazao da nema ovisnosti parametara regulatora o momentu inercije J, tako da algebarska analiza utjecaja momenta inercije na karakteristične odnose nije potrebna. Na slici 15 se vidi utjecaj skokovite promjene momenta inercije. Primjećuje se povećanje oscilacija i povećava se vrijeme smirivanja.
Postupna promjena momenta inercije – rezultat simulacije na promjenu momenta inercije od 1^*J do 10^*J, od prve do desete sekunde

Na slici 16 vidi se da sustav postaje oscilatoran tek nakon šeste sekunde i vrijednosti momenta inercije od $6J$, te regulator ne uspijeva stabilizirati odziv procesa.
3.3.2. Dualni regulator brzine vrtnje s referentnim modelom

Algebarska analiza

Analogno kaskadnoj strukturi pretpostavljeno je da su izrazi za parametre regulatora brzine vrtnje 3.33, 3.44, 3.45 vrijede za nominalni iznos ukupne vrijednosti momenta inercije. Takvi nominalni parametri regulatora uvršteni su u karakteristični polinom prijenosne funkcije zatvorenog regulacijskog kruga brzine vrtnje kako bi se dobio uvid ovisnosti karakterističnih odnosa D_2 i D_3 na omjer realne i nominalne vrijednosti momenta inercije.

$$K_{RP} = \frac{J}{T_{ep}K_m} = \frac{D_{2p}l}{K_mT_{\Sigma 2}}$$

$$K_{RI} = \frac{J}{K_m} \left[\frac{1}{D_2T_e} - \frac{1}{T_{ep}} \right]$$

$$T_{RI} = T_e \left(1 - \frac{D_2T_e}{T_{ep}} \right)$$

Izrazi za parametre regulatora pokazuju da dva parametra regulatora K_{RP} i K_{RI}, ovise o momentu inercije. Uvrštavanjem 3.44 i 3.45 u 3.37, uzevši u obzir izraz 3.42 i da karakteristični polinom ima oblik:

$$\frac{1}{A_c} = \frac{1}{1 + a_{c1}s + a_{c2}s^2 + a_{c3}s^3}$$

Uvrštavanjem izraza 3.32 za T_{ep} dobiveni su sljedeći izrazi:

$$a_{c1} = \frac{T_{\Sigma 2}}{D_3D_2}$$

(3.58)

$$a_{c2} = \frac{T_{R1}J}{K_mK_{RI}} = \frac{T_e - \frac{D_2T_e^2}{T_{ep}}}{\frac{1}{D_2T_e} - \frac{1}{T_{ep}}} = \frac{T_{\Sigma 2}}{D_3^2D_2} \frac{J}{J_n}$$

(3.59)
Izjednačivanjem dobivenih izraza s karakterističnim polinomom dvostrukog odnosa

\[A(s) = 1 + T_{er}s + D_{2r}T_{er}^2s^2 + D_{3r}D_{2r}^2T_{er}^3s^3 \]

dobijemo sljedeće izraze za karakteristične odnose i vremena optimuma dvostrukog odnosa:

\[T_{er} = a_{c1} = \frac{T_{\Sigma 2}}{D_3D_2} \] \hspace{1cm} (3.61)

\[D_{2r} = \frac{a_{c2}}{a_{c1}^2} = D_2 \frac{J}{J_n} \] \hspace{1cm} (3.62)

\[D_{3r} = \frac{a_{c1}a_{c3}}{a_{c2}^2} = D_3 \frac{J_n}{J} \] \hspace{1cm} (3.63)

Što ukazuje na identičnu osjetljivost dualnog regulatora i klasične kaskadne strukture na promjenu momenta inercije.

Slika 17. Prikaz realnog stanja odnosa D2r i D3r u ovisnosti o J/Jn
Simulacijska analiza kruga brzine vrtnje

Skokovita promjena momenta inercije – rezultat simulacije na skokovitu promjenu momenta inercije od 5J na kraju prve sekunde simulacije

![Referentni model drugog reda](image)

Referentni model drugog reda \(G_m(s) = \frac{1}{D_2 p T_e p^2 + T_e p + 1} \)

![Neadaptivni dualni regulator](image)

U slici 21, kao i kod klasične kaskadne strukture, vidljivo je znatno pogoršanje odziva sustava pri povećanoj vrijednosti momenta inercije. Za razliku od kaskadne strukture, dualni regulator ima nešto veći prebačaj, oko 40% (zbog utjecaja nula, vidljive u izrazu 3.49), ali zato mu je vrijeme smirivanja oko 0.2 sekunde

![Slika 18. Neadaptivni dualni regulator - Nagla promjena inercije](image)
Postupnu promjenu momenta inercije – rezultat simulacije na promjenu momenta inercije od 1J do 5J, od prve do pete sekunde

Referentni model drugog reda \(G_m(s) = \frac{1}{D_2 \omega_p^2 + T_\omega \omega_p + 1} \)

Slika 19. Neadaptivni dualni regulator - postepena promjena inercije

Pri postepenoj promjeni momenta inercije sustav sa dualnim regulatorom pokazuje sve gore vladanje što je moment inercije veći. Pokazano je da, kao i kod kaskadne strukture, može doći do destabilizacije sustava i gubitka kvalitetnog praćenja referentne vrijednosti.
4. Adaptivni sustavi regulacije

Adaptivni sustav sa referentnim modelom može se smatrati sustavom u kojem je željeno ponašanje izraženo referentnim modelom kojeg treba slijediti i usporedno mjenjati parametre procesa\[^4\]. Sustav sadrži glavnu petlju povratne veze u kojoj su proces i regulator, te još jednu povratnu petlju preko koje se podešavaju (adaptiraju) parametri regulatora. Parametri se adaptiraju na temelju pogreške koja se javlja kao razlika izlaza procesa i izlaza referentnog modela. Mehanizam za adaptaciju parametara u ovakvom adaptivnom sustavu može biti baziran na gradijentnoj metodi (M.I.T) ili na teoriji stabilnosti (Lyapunov). U ovom projektu korištena je gradijentna metoda adaptacije parametara.

![Blok dijagram adaptivnog sustava sa referentnim modelom](image)

Slika 20. Blok dijagram adaptivnog sustava sa referentnim modelom

4.1. M.I.T. pravilo

Kako bi objasnili MIT pravilo, razmotriti će se sustav sa regulacijskom petljom u kojoj regulator ima jedan prilagodljivi parametar θ. Željeni odziv je specificiran modelom čiji je izlaz y_m, a ε_m je razlika između stvarnog odziva sustava y i odziva modela y_m. Jedna od mogućnosti je da se parametri prilagode na takav način da se minimizira funkcija gubitka\[^4\]:

\[f(\theta) = \varepsilon_m^2 \]
\[J(\theta) = \frac{1}{2} \varepsilon_m^2(\theta) \] (4.1)

Da bi se smanjio \(J \), potrebno je promjeniti parametre u smjeru negativnog gradijenta \(J \):
\[
\frac{d\theta}{dt} = -\gamma \frac{\partial J}{\partial \theta} = -\gamma \varepsilon_m \frac{\partial \varepsilon_m}{\partial \theta} \quad (4.2)
\]

Parcijalna derivacija \(\frac{\delta \varepsilon_m}{\delta \theta} \), koja se zove funkcija osjetljivosti\(^4\), prikazuje kako utječe promjenjivi parametar na grešku sustava. Parametar \(\gamma \) predstavlja adaptacijsko pojačanje i određuje brzinu promjene adaptivnog parametra regulatora. Koeficijent \(\gamma \) se postavlja na relativno nisku vrijednost kako se ne bi narušila stabilnost sustava, ili na visoku vrijednost ako je potrebna brža promjena promjenjivog parametra. Ako se pretpostavi da su promjene parametra sporije od drugih varijabli sustava, onda se derivacija na desnoj strani izraza 4.2 računa pod pretpostavkom da je \(\theta \) konstanta. Postoji puno alternativa funkciji gubitka iz 4.1.

Ako trebamo prilagođavati više parametara, \(\theta \) se tretira kao vektor, a \(\frac{\partial \varepsilon_m}{\partial \theta} \) gradijent greške u odnosu na parametre.

4.2. Direktna adaptacija parametra \(K_{R2} \) – Klasična kaskadna struktura

![Blok dijagram kaskadne regulacije brzine vrtanje s referentnim modelom](attachment:image.png)

Slika 21. Blok dijagram kaskadne regulacije brzine vrtanje s referentnim modelom
U prijašnjem poglavlju zaključeno je da ako se $T_{\Sigma 2}$ ne mjenja, jedini parametar koji trebamo adaptirati je $K_{R 2}$. Primjenjuje se MIT pravilo:

$$\frac{d\theta}{dt} = -\gamma\epsilon_m \frac{\delta \epsilon_m}{\delta \theta}$$ (4.3)

gdje se u ovom slučaju promjenjivi parametar θ odnosi samo na $K_{R 2}$, te je:

$$\epsilon_m = \omega - \omega_m$$ (4.4)

$$\frac{\partial \epsilon_m}{\partial \theta} = \frac{\partial}{\partial \theta} (G_c(s) - G_m(s))\omega_R$$ (4.5)

Iz izraza 3.11 prijenosna funkcija zatvorenog kruga kaskadne strukture izgleda:

$$G_c(s) = \frac{\omega}{\omega_R} = \frac{1}{1 + \frac{T_{i 2} s}{K_{R 2} K_m} \frac{1}{s^2} + \frac{T_{i 2} J T_{\Sigma 2}}{K_{R 2} K_m} s^3}$$

uzme se u obzir da je $K_{el} = 1$, te se pomnoži brojnik i nazivnik s $K_{R 2} K_m$:

$$G_c(s) = \frac{\omega}{\omega_R} = \frac{K_{R 2} K_m}{K_{R 2} K_m + K_{R 2} K_m T_{i 2} s + T_{i 2} J s^2 + T_{i 2} J T_{\Sigma 2} s^3}$$ (4.6)

Prijenosna funkcija referentnog modela uzeta je iz izraza 3.13:

$$G_c(s) = \frac{\omega_m}{\omega_R} = \frac{1}{1 + T_{eb} s + D_{2b} T_{eb}^2 s^2 + D_{3b} D_{2b}^2 T_{eb}^3 s^3}$$ (4.7)

Vidljivo je da je:

$$\frac{\partial G_m(s)}{\partial K_{R 2}} = 0$$ (4.8)

Uvrštavanje prethodnog izraza u 4.5 dobije se:

$$\frac{\partial \epsilon_m}{\partial K_{R 2}} = \frac{\partial G_c(s)}{\partial K_{R 2}} \omega_R$$ (4.9)
Parcijalnom derivacijom po promjenjivom parametru dobije se:

\[
\frac{\partial G_c}{\partial K_{R2}} = \frac{K_m N(s) - K_m^2 K_{R2} (1 + T_{12}s)}{(K_{R2} K_m + K_{R2} K_m T_{12}s + T_{12} J s^2 + T_{12} J T_{\Sigma2} s^3)^2}
\]

gdje je \(N(s) = K_{R2} K_m + K_{R2} K_m T_{12}s + T_{12} J s^2 + T_{12} J T_{\Sigma2} s^3\)

Nakon sređivanja dobije se:

\[
\frac{\partial G_c}{\partial K_{R2}} = \frac{J K_m T_{12} s^2 (T_{\Sigma2} s + 1)}{(1 + T_{12} s + \frac{T_{12} J}{K_{R2} K_m} s^2 + \frac{T_{12} J T_{\Sigma2}}{K_{R2} K_m} s^3)^2} \quad (4.10)
\]

Promjena inercije nam utječe samo na parametar \(K_{R2}\), te parametar \(T_{12}\) zanemarujemo. Izraz 4.10 podijelimo sa \((K_{R2} K_m)^2\):

\[
\frac{\partial G_c}{\partial K_{R2}} = \frac{T_{12} J s^2 (1 + T_{\Sigma2})(K_{R2} K_m)^{-1}}{K_{R2}(1 + T_{12} s + \frac{T_{12} J}{K_{R2} K_m} s^2 + \frac{T_{12} J T_{\Sigma2}}{K_{R2} K_m} s^3)^2} \quad (4.11)
\]

te se od izraza 4.11. izlučuje \(G_c(s)\):

\[
\frac{\partial G_c}{\partial K_{R2}} = \frac{T_{12} J s^2 (1 + T_{\Sigma2})(K_{R2} K_m)^{-1}}{K_{R2}(1 + T_{12} s + \frac{T_{12} J}{K_{R2} K_m} s^2 + \frac{T_{12} J T_{\Sigma2}}{K_{R2} K_m} s^3)^2} G_c(s) \quad (4.12)
\]

Uvrštavanjem 4.12 u 4.9 te se dobiva sljedeći izraz:

\[
\frac{\partial \varepsilon_m(s)}{\partial K_{R2}} = \frac{\partial G_c(s)}{\partial K_{R2}} \omega_R \quad (4.13)
\]

\[
= \frac{T_{12} J s^2 (1 + T_{\Sigma2})(K_{R2} K_m)^{-1}}{K_{R2}(1 + T_{12} s + \frac{T_{12} J}{K_{R2} K_m} s^2 + \frac{T_{12} J T_{\Sigma2}}{K_{R2} K_m} s^3)^2} G_c(s) \omega_R
\]

34
Kada se 4.1. uvrsti u 4.3. dobiven je izraz za gradijent parametra K_{R2}, koji se zapravo estimira, te se ta estimacija zatim primjenjuje kao stvarno pojačanje regulatora. Oznaka K_{R2} zamjenjuje se sa \hat{K}_{R2}, da ne dode do zamjene nominalnog pojačanja iz izraza 3.17 i estimiranog pojačanja:

$$\frac{\partial K_{R2}}{\partial t} = \hat{K}_{R2}S$$

$$= -\gamma \frac{T_{12}I s^2 (1 + T_{\Sigma 2})(\hat{K}_{R2}K_m)^{-1}}{\hat{K}_{R2}(1 + T_{12}s + \frac{T_{12}I}{\hat{K}_{R2}K_m}s^2 + \frac{T_{12}I T_{\Sigma 2}}{\hat{K}_{R2}K_m}s^3)} G_c(s) \omega_R \varepsilon_m(s)$$

Pošto \hat{K}_{R2} nije poznat unaprijed, problematično je realizirati gornju jednadžbu. Prema Astron\cite{4} predlaže se zamjena dijela s desne strane jednadžbe koja sadrži \hat{K}_{R2} s izrazom za nominalne parametre (jednadžbe 3.13, 3.17, 3.18), što odgovara modelskoj dinamici $G_m(s)$ i opravdao je ako je sustav razmjerno blizu nominalnog iznosa parametara (blizu stvarnog izraza K_{R2}). Dobije se sljedeći izraz:

$$\hat{K}_{R2}S = -\gamma \frac{D_{2b}T_{eb}^2s^2 + D_{3b}D_{2b}T_{eb}^3s^3}{\hat{K}_{R2}(1 + T_{eb}s + D_{2b}T_{eb}s^2 + D_{3b}D_{2b}T_{eb}^3s^3)} \varepsilon_m(s) \omega(s)$$

Kaskadna struktura s adaptivnim regulatorom brzine vrtnje se zatim može nadovezati na neadaptivni P regulator položaja čija je sinteza objašnjena u poglavlju 3.1.3. Simulink model adaptivne kaskadne strukture dan je u prilogu 5.
4.3. Direktna adaptacija parametara K_{RP} i K_{RI} – Dualni regulator

Pošto dualna struktura već sadrži referentni model u svojoj strukturi, taj isti referentni model se može koristiti za postavljanje adaptivnog upravljanja.

Identično direktnoj adaptaciji kaskadne strukture u izraz 4.4 i 4.5

$$
\varepsilon_m = \omega(s) - \omega_m(s)
$$

$$
\frac{\partial \varepsilon_m}{\partial \theta} = \frac{\delta}{\delta \theta} (G_{CD}(s) - G_m(s))\omega_R(s)
$$

gdje je $G_{CD}(s)$ prema izrazu 3.49 prijenosna funkcija brzine vrtne s obzirom na referentnu brzinu, te se zapisuje na sljedeći način radi jednostavnijeg izvoda parcijalne derivacije:

$$
G_{CD}(s)
= \left(1 + G_m(s)\left(\frac{K_{RI} + 1 + T_{RI}s}{K_{RP} T_{RI}s}\right)\right) \frac{T_{RI}K_{RP}K_m}{T_{RI} T_{\Sigma} J^2 s^3 + T_{RI} J s^2 + (K_{RP} + K_{RI})K_m T_{RI} s + K_{RI} K_m} \omega_R(s)
$$

(4.16)

nakon sređivanja:

$$
G_{CD}(s) = \frac{(K_{RP} T_{RI}s + G_m(s)K_{RI}(1 + T_{RI}s))}{T_{RI} T_{\Sigma} J^2 s^3 + T_{RI} J s^2 + (K_{RP} + K_{RI})K_m T_{RI} s + K_{RI} K_m} K_m \omega_R(s)
$$

(4.17)
A prijenosna funkcija modela je preuzeta iz neadaptivnog dualnog regulatora, izraz 3.31:

\[G_m(s) = \frac{1}{1 + T_\varepsilon p s + D_2 p T_\varepsilon^2 s^2} \quad (4.18) \]

U izraz 4.5 uvršteni su parametri \(K_{RP} \) i \(K_{RI} \) kao promjenjivi (prema algebarskoj analizi iz poglavlja 3.3.2, na njih utječe moment inercije motora) te je vidljivo da:

\[\frac{\partial G_m(s)}{\partial K_{RP}} = 0 \quad (4.19) \]

\[\frac{\partial G_m(s)}{\partial K_{RI}} = 0 \quad (4.20) \]

\[\frac{\partial \varepsilon_m}{\partial K_{RP}} = \frac{\partial G_{CD}(s)}{\partial K_{RP}} \omega_R \quad (4.21) \]

\[\frac{\partial \varepsilon_m}{\partial K_{RI}} = \frac{\partial G_{CD}(s)}{\partial K_{RI}} \omega_R \quad (4.22) \]

Izrazi za parcijalne derivacije po promjenjivim parametrima:

\[\frac{\partial G_{CD}(s)}{\partial K_{RP}} = K_m \frac{T_{RI} s N(s) - K_m T_{RI} s B(s)}{(T_{RI} T_{\\Sigma 2} s^3 + T_{RI} s^2 + (K_{RP} + K_{RI}) K_m T_{RI} s + K_{RI} K_m)^2} \omega_R(s) \quad (4.23) \]
\[\frac{\partial G_{CD}(s)}{\partial K_{RI}} = K_m \frac{G_m(s)(1 + T_{RI}s)N(s) - (K_m T_{RI}s + K_m) B(s)}{(T_{RI}T_{\Sigma 2}J s^3 + T_{RI}J s^2 + (K_{RP} + K_{RI})K_m T_{RI}s + K_{RI}K_m)^2} \omega_R(s) \] (4.24)

gdje je:

\[N(s) = (T_{RI}T_{\Sigma 2}J s^3 + T_{RI}J s^2 + (K_{RP} + K_{RI})K_m T_{RI}s + K_{RI}K_m) \] - Nazivnik prijenosne funkcije zatvorenog regulacijskog kruga \(g_{cd} \)

\[B(s) = (K_{RP} T_{RI}s + G_m(s)K_{RI}(1 + T_{RI}s)) \] - Brojnik prijenosne funkcije zatvorenog regulacijskog kruga \(g_{cd} \)

Sređivanjem 4.23 i 4.24 dobije se:

\[\frac{\partial G_{CD}(s)}{\partial K_{RP}} = K_m T_{RI}s \left(\frac{N(s)}{N(s)^2} - \frac{K_m(K_{RP} T_{RI}s + G_m(s)K_{RI}(1 + T_{RI}s))}{(N(s))^2} \right) \omega_R(s) \] (4.25)

\[\frac{\partial G_{CD}(s)}{\partial K_{RI}} = K_m(1 + T_{RI}s) \left(\frac{G_m(s)N(s) - K_m B(s)}{N(s)^2} \right) \omega_R(s) \] (4.26)

I konačni izrazi za funkcije osjetljivosti:

\[\frac{\partial G_{CD}(s)}{\partial K_{RP}} = K_m T_{RI}s \frac{(1 - G_{CD}(s))}{N(s)} \omega_R(s) \] (4.27)

\[\frac{\partial G_{CD}(s)}{\partial K_{RI}} = \frac{K_m T_{RI}s}{T_{RI}T_{\Sigma 2}J s^3 + T_{RI}J s^2 + (K_{RP} + K_{RI})K_m T_{RI}s + K_{RI}K_m} (\omega_R - \omega) \] (4.28)
Kada se 4.27 i 4.28 podjeli sa 4.3. dobije se izraz za gradijent parametra K_{RI} i K_{RP}, te se ta estimacija zatim primjenjuje kao stvarno pojačanje regulatora. Oznaka K_{RI} i K_{RP} zamjenjuje se sa \hat{K}_{RI} i \hat{K}_{RP}, da ne dode do zamjene nominalnog pojačanja iz izraza 3.32 i 3.44 sa estimiranim pojačanjem:

\[
\frac{\partial K_{RP}}{\partial t} = \hat{K}_{RP} S
\]

\[
= -\gamma \frac{1}{\hat{K}_{RI}} \frac{T_{RI} S}{1 + T_{RI} \frac{K_{RP}}{\hat{K}_{RI}} + \frac{J T_{RI}}{K_{m} \hat{K}_{RI}} S^2 + \frac{J T_{RI} T_{E}^2}{K_{m} \hat{K}_{RI}} S^3} \left(\omega_R - \omega\right) \epsilon_m(s)
\]

\[
\frac{\partial K_{RI}}{\partial t} = K_{RI} S
\]

\[
\quad = \gamma \frac{1}{\hat{K}_{RI}} \frac{1 + T_{RI} S}{K_{RP} + \frac{\hat{K}_{RI} S}{1 + T_{RI} \frac{K_{RP}}{\hat{K}_{RI}} + \frac{J T_{RI}}{K_{m} \hat{K}_{RI}} S^2 + \frac{J T_{RI} T_{E}^2}{K_{m} \hat{K}_{RI}} S^3}} \left(\epsilon_m(s)\right)^2
\]

Pošto \hat{K}_{RI} i \hat{K}_{RP} nisu poznat unaprijed, problematično je realizirati gornje jednadžbe. Predlaže se zamjena dijela s desnje strane jednadžbi koja sadrže \hat{K}_{RI} i \hat{K}_{RP} zamjeni izrazom s nominalnim parametrima (3.38, 3.39):

\[
\hat{K}_{RP} S = -\gamma \frac{1}{K_{RP} + \frac{K_{RI} S}{1 + T_e S + D_2 T_e^2 S^2 + D_3 D_2^2 T_e^3 S^3}} \left(\omega_R - \omega\right) \epsilon_m(s)
\]

\[
\hat{K}_{RI} S = \gamma \frac{1}{K_{RP} + \frac{K_{RI} S}{1 + T_e S + D_2 T_e^2 S^2 + D_3 D_2^2 T_e^3 S^3}} \left(\epsilon_m(s)\right)^2
\]

S čime dobijemo korektnu adaptaciju parametara u blizini radne točke. U simulacijama su korištena dva različita adaptacijski pojačanja kako bi se proučio njihov odnos.

Iz izraza 4.31 je vidljivo da gradijent promjene ovisi o pogrešci slijeđenja sustava te time se može zaključiti da će konvergencija biti brža što je pogreška slijeđenja sustava veća. Parametar K_{RP} će konvergirati brže kod nagle promjene momenta inercije. Izraz 4.32 prikazuje konvergenciju K_{RI} s kvadratom razlike modela i stvarnog sustava. Simulink model adaptivne dualne strukture dan je u prilogu 6.
4.4. Analiza osjetljivosti adaptivnih regulatora na naglu i postupnu promjenu momenta inercije

Algebarska analiza osjetljivosti je identična neadaptivnim regulatorima, tako da će naglasak ovog poglavlja biti na simulacijskoj analizi adaptivnih regulatora, te utjecaju adaptacijskog pojačanja γ i reference na estimaciju parametra. Dobivene izraze za parametre regulatora i gradijent promjene primjenjujemo u modelu kaskadne regulacije brzine vrtnje i dualnog regulatora simuliranom u toolbox-u SIMULINK™ programskog paketa MATLAB™. Simulacijsku analizu vladanja regulacijskog kruga brzine vrtnje, uključivo s analizom robustnosti na promjenu momenta inercije provodi se u režimu malih signala, gdje izlaz regulatora brzine ne ulazi u zasićenje.

Analizira se ponašanje sustava na promjenu ukupne količine momenta inercije. Radi boljeg prikaza rada adaptivnog regulatora izabrana su dva slučaja promjene inercije:

1. Slučaj skokovite promjene inercije, gdje u drugoj sekundi simulacije dolazi do nagle promjene inercije sa početne vrijednosti J na $5J$.

2. Slučaj inkrementalne promjene inercije, gdje u drugoj sekundi simulacije sa početne vrijednosti J, inercija se postepeno povećava do kraja trajanja simulacije.
4.4.1. Struktura s Klasičnim kaskadnim adaptivnim regulatorom

Skokovita promjena momenta inercije – rezultat simulacije na skokovitu promjenu momenta inercije od 5J na kraju prve sekunde simulacije

Slučaj 1. : $\gamma = 1, \omega_R = 100 \text{ rad/s}$

![Adaptivna kaskadna struktura](image)

Slika 23. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 1, \omega_R = 100 \text{ rad/s}$
Slika 24. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 1, \omega_R = 100 \text{ rad/s}$

Iz slike 23 vidna je razlika u ponašanju u odnosu na neadaptivne sustave. Dolazi do udara kod promjene momenta inercije i sustav na trenutak oscilira ali već kod iduće promjene referentne vrijednosti dolazi do smanjenja oscilacija zbog povećanja parametra K_{R2}, te se sustav adaptira sa svakom sljedećom promjenom referentne vrijednosti. Na slici 24 vidimo ponašanje funkcije osjetljivosti i konvergencije estimiranog parametra K_{R2} stvarnoj vrijednosti koja bi trebala biti pri toj vrijednosti J. Na konvergenciju estimiranog parametra, tzv. učenje, se može direktno utjecati podešavanjem adaptacijskog pojačanja γ, a indirektno i veličinom referentne vrijednosti.
Slučaj 2. : $\gamma = 2, \omega_R = 100 \text{ rad/s}$

Slika 25. Adaptivna kaskadna struktura - Skokovita promjena inercije $\gamma = 2, \omega_R = 100 \text{ rad/s}$

Slika 25 prikazuje već kod promjene momenta inercije manji prebačaj, te puno bržu adaptaciju. Već na trećoj promjeni referentne vrijednosti dolazi vrijednosti prebačaja manjoj od 10%. Na slici 26 su vidni i razlozi kvalitetnijeg odziva sustava, parametar K_{R2} se mjenja u puno većim skokovima uslijed veće vrijednosti adaptacijskog pojačanja.
Na adaptaciju parametara također utječe i veličina referentne vrijednosti, što je vidljivo na slikama 27 i 28.

Slika 26. Adaptivna kaskadna struktura - Skokovita promjena inercije \(\gamma = 2, \omega_R = 100 \text{ rad/s} \)
Slučaj 3. : $\gamma = 1, \omega_R = 300 \text{ rad/s}$

Na slici 27 je vidljivo puno kvalitetnije ponašanje sustava, skoro identično sustavu s nominalnom vrijednošću momenta inercije J. Razlog tome se vidi na slici 28, već kod promjene momenta inercije, vrijednost estimiranog parametra dostiže i prelazi vrijednost parametra K_{R2}.

Slika 27. Adaptivna kaskadna stuktura - Skokovita promjena inercije $\gamma = 1, \omega_R = 300 \text{ rad/s}$
Slika 28. Adaptivna kaskadna stuktura - Skokovita promjena inercije $\gamma = 1$, $\omega_R = 300 \text{ rad/s}$

Na slici 28 se može primjetiti jedan od nedostataka M.I.T. metode adaptivnog upravljanja, gdje zbog prevelike vrijednosti adaptivnog pojačanja γ može doći do naglih oscilacija parametra koji se adaptira, te sam sustav može postati nestabilan ako se pomakne dovoljno daleko od svoje radne točke (radnih parametara)\[4\].
Postupna promjena inercije – rezultat simulacije na promjenu momenta inercije od 1J do 5J, od prve do pete sekunde

Slučaj 1. \(\gamma = 1 \), \(\omega_R = 100 \text{ rad/s} \)

Slika 29. Adaptivna kaskadna stuktura - Postepena promjena inercije \(\gamma = 1, \omega_R = 100 \text{ rad/s} \)

Slično slučaju nagle promjene inercije na slici 29 vidi se poboljšanje u odnosu na neadaptivni sustav. Iz slike 30 se može zaključiti da pri ovoj vrijednosti reference adaptacijsko pojačanje nije dovoljno veliko da bi adekvatno pratilo promjenu momenta inercije.
Slika 30. Adaptivna kaskadna stuktura - Postepena promjena inercije $\gamma = 1$, $\omega_R = 100 \text{ rad/s}$
Sličaj 2.: $\gamma = 2, \omega_R = 100 \text{ rad/s}$

Slika 31. Adaptivna kaskadna stuktura - Postepena promjena inercije $\gamma = 2, \omega_R = 100 \text{ rad/s}$

U drugom slučaju, slike 31 i 32, vidimo da je pri referentnoj vrijednosti od 100 rad/s dvostruko veće adaptacijsko pojačanje omogućava kvalitetnije praćenje promjene parametara. Odziv sustava ne odstupa niti u jednom trenutku od idealnih 6% prebačaja od referentne vrijednosti.
Slika 32. Adaptivna kaskadna stuktura - Postepena promjena inercije $\gamma = 2$, $\omega_R = 100 \text{ rad/s}$
Slučaj 3. : \(\gamma = 1 \), \(\omega_R = 300 \text{ rad/s} \)

Slika 33. Adaptivna kaskadna stuktura - Postepena promjena inercije \(\gamma = 1, \omega_R = 300 \text{ rad/s} \)

Slika 33 i 34 nam pokazuju slučaj pri trostruko većoj vrijednosti reference te analogno slučaju sa naglom promjenom inercije vidna je brža konvergencija estimiranog parametra, ali također se vidi i određena nestabilnost čak i kod dijela gdje nema potrebe za adaptacijom parametra (zbog staticke greške odziva modela i stvarnog sustava.)
Slika 34. Adaptivna kaskadna stuktura - Postepena promjena inercije $\gamma = 1$, $\omega_R = 300 \text{ rad/s}$
Skokovita promjena momenta inercije – regulacija pozicije - rezultat simulacije na skokovitu promjenu momenta inercije od 5J na kraju prve sekunde simulacije

Slika 35. Adaptivni regulator pozicije - kaskada
Postupna promjena inercije – regulacija pozicije – rezultat simulacije na promjenu momenta inercije od 1J do 10J, od prve do desete sekunde.

Slika 36. Adaptivni regulator pozicije - kaskada
Na slikama 35 i 36 prikazana je simulacija nadređenog kruga regulacije pozicije s podređenim adaptivnim krugom brzine vrtnje. Vidno je značajno poboljšanje odziva u odnosu na neadaptivnu strukturu sa slika 15 i 16. Promjena referentne vrijednosti brzine vrtnje nije značajna, zbog čega je brzina adaptacije relativno spora, uz relativno visoko adaptivno pojačanje $\gamma = 5$. U sustavu gdje bi pomak referentne vrijednosti bio veći i konstantan došlo bi do puno kvalitetnije konvergencije estimacije parapetra K_{R2}.
4.4.2. Struktura s Dualnim adaptivnim regulatorom

Struktura sa dualnim regulatorom ima dva parametra koja se adaptiraju i time dvije vrijednosti adaptivnog pojačanja. Obradeno je nekoliko slučajeva kako bi se analizirali odnosi između odziva sustava i adaptivnih pojačanja, a samim time i konvergencije promjenjivih parametara.

Skokovita promjena momenta inercije – rezultat simulacije na skokovitu promjenu momenta inercije od 5J na kraju prve sekunde simulacije

Slučaj 1: \(\gamma_{KRP} = \gamma_{KRI} = 1 \\omega_R = 100 \text{ rad/s} \)

![Diagram](image)

Slika 37. Adaptivna Dualna struktura - Nagla promjena inercije \(\gamma_{KRP} = \gamma_{KRI} = 1 \\omega_R = 100 \text{ rad/s} \)

Dualna struktura u ovom slučaju pokazuje veći prebačaj pri promjeni momenta inercije, ali i brži odziv sustava (karakteristika dualnog regulatora), te bržu konvergenciju.
parametara, vidljivo na slici 38 (razlog: izraz 4.31, ovisnost gradijenta o pogrešci sljeđenja). Na slici 36 se također vidi da je ova vrijednost adaptacijskog pojačanja prevelika za K_{RI} te dolazi do neželjenih oscilacija estimiranog parametra.

Slika 38. Adaptivna dualna struktura - nagla promjena momenta inercije $\gamma_{KRP} = \gamma_{KRI} = 1$

$\omega_R = 100 \text{ rad/s}$
Slučaj 2: $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5, \omega_R = 100 \text{ rad/s}$

![Adaptivna MIT struktura](image1)

![Poremecaj i Moment motora](image2)

![Inercija](image3)

Slika 39. Adaptivna Dualna struktura - Nagla promjena inercije $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5, \omega_R = 100 \text{ rad/s}$

U drugom slučaju ponovo dolazi do početnog prebačaja pri povećanju momenta inercije ali već kod iduće promjene referentne vrijednosti sustav se stabilizira na željenu vrijednost. Iz slike 40 je vidljiva brža početna konvergencija K_{RP} (izraz 4.31), te stabilnije ponašanje estimacije K_{RI}, koja skoro pa idealno prati potrebno (stvarno) stanje parametra.
Slika 40. Adaptivna Dualna struktura - Nagla promjena inercije $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5$,
$\omega_R = 100 \text{ rad/s}$
Slučaj 3: $\gamma_{KRP} = 0.2, \gamma_{KRI} = 0.05, \omega_R = 300 \text{ rad/s}$

![Adaptivna dualna struktura](image)

Slika 41. Adaptivna dualna struktura - Nagla promjena inercije $\gamma_{KRP} = 0.2, \gamma_{KRI} = 0.05, \omega_R = 300 \text{ rad/s}$

Kao i kod kaskadne strukture, pri većim promjenama referentne vrijednosti uočava se osjetljivost M.I.T. metode. Adaptivna pojačanja γ se moraju značajno smanjiti kako ne bi došlo do destabilizacije sustava. Početni prebačaj je još uvijek značajan ali je dualna struktura brža od kaskadne (U prilogu 1 je usporedba odziva na skokovitu promjenu reference), te brže konvergira potrebnoj vrijednosti promjenjivih parametara. Iz slike 42 je vidljivo da čim je greška slijeđenja sustava svedena na malu vrijednost brzina estimacije parametra K_{RP} se drastično smanjuje.
Slika 42. Adaptivna dualna struktura - Nagla promjena inercije $y_{KRP} = 0.2, y_{KRI} = 0.05$, $\omega_R = 300 \text{ rad/s}$
Postupna promjena inercije – rezultat simulacije na promjenu momenta inercije od 1J do 5J, od prve do pete sekunde

Slučaj 1: $\gamma_{KRP} = \gamma_{KRI} = 1 \omega_R = 100 \text{ rad/s}$

![Diagram](image)

Slika 43. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = \gamma_{KRI} = 1 \omega_R = 100 \text{ rad/s}$

Iz slika 43 i 44 zaključuje se da vrijednost pojačanja γ_{KRP} nije dovoljna kako bi uhvatila potrebnu promjenu momenta inercije, ali je vidljivo prema izrazu 4.31 da će se brzina adaptacije također povećavati kako se povećava greška slijeđenja.
Slika 44. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = \gamma_{KRI} = 1 \omega_R = 100 \text{ rad/s}$
Slučaj 2: $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5, \omega_R = 100 \text{ rad/s}$

![Graph of adaptive dual structure - step change in inertia $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5$ $\omega_R = 100 \text{ rad/s}$](image)

Slika 45. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = 1.5, \gamma_{KRI} = 0.5$ $\omega_R = 100 \text{ rad/s}$

Za razliku do prvog slučaja primjećuje se kvalitetnije praćenje estimiranog parametra K_{RP}, samim time i kvalitetniji odziv sustava. Još uvijek adaptacijsko pojačanje nije dovoljno jako da u potpunosti prati promjenu. Također je vidljivo da odziv sustava više ovisi od parametra K_{RP} što i ima smisla jer on reagira na pogrešku sljeđenja sustava i u glavnoj je grani regulacije.
Slika 46. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = 1.5$, $\gamma_{KRI} = 0.5$

$\omega_R = 100 \text{ rad/s}$
Slučaj 3: $\gamma_{KRP} = 0.2, \gamma_{KRI} = 0.05, \omega_R = 300 \text{ rad/s}

Slika 47. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = 0.2, \gamma_{KRI} = 0.05$

Slike 47 i 48 još jednom ilustriraju kako pri odabiru adaptacijskog pojačanja γ treba biti oprezan, jer pri većim promjenama referentne vrijednosti gradijent promjene je puno veći. U ovom slučaju, ako sustav neće ići u veće pomake, pojačanja se mogu povećati.
Slika 48. Adaptivna dualna struktura - postepena promjena inercije $\gamma_{KRP} = 0.2$, $\gamma_{KRI} = 0.05$

$\omega_R = 300 \text{ rad} / \text{s}$

67
5. Zaključak

U ovome radu provedeni su postupci projektiranja dviju struktura regulatora brzine vrtne istosmjernog servomotora: tradicionalnog PI regulatora i dualnog regulatora s temeljnim P regulatorom brzine vrtne i pomoćnim PI regulatorom koji djeluje po signalu pogreške slijedjenja referentnog modela. Sinteza klasičnog PI regulatora zasniva se na kriteriju simetričnog optimuma, dok se sinteza složenijeg dualnog regulatora s referentnim modelom odvija u dvije faze i zasnovana je na kriteriju optimuma dvostrukog odnosa. Također se pokazuje da je u slučaju projektiranja dualnog regulatora potrebno voditi računa o međuvezi između glavne i pomoćne petlje povratne veze, no zato je moguće podešiti regulator za dvostruko bržu dinamiku odziva regulacijskog kruga s obzirom na promjene referentne vrijednosti.

Provedena je algebarska i simulacijska analiza osjetljivosti navedenih struktura na promjenu momenta inercije pogona. Algebarski je pokazana identična osjetljivost obaj sustava. Prikazano je stanje karakterističnih odnosa D_2 i D_3 u odnosu na omjer J/J_n. Parametar D_2 se mjenja proporcionalno s omjerom J/J_n te u slučaju povećanja momenta inercije dolazi do oscilacije dominantne dinamike sustava (nižim frekvencijama), dok se omjer D_3 mjenja obrnuto proporcionalno, što donosi visokofrekventne oscilacije pri smanjenju momenta inercije.

Zatim su za navedene strukture provedeni postupci sinteze adaptivnih regulatora po gradijentnoj M.I.T. metodi. Pri algebarskoj analizi sustava pokazano je da su parametri na koje utječe promjena inercije K_{R2} kod kaskadne strukture, te K_{RP} i K_{RI} kod dualnog regulatora. Kod izračuna gradijenta (funkcije osjetljivosti) u oba slučaja dolazi do pojavljivanja promjenjivog parametra unutar izraza, što otežava realizaciju gradijentne funkcije. Promjenjivi parametri se mogu zamijeniti s vrijednostima za nominalni iznos, što se potvrdilo valjanim putem simulacijskih provjera.

Simulacijske analize su ukazale i na osjetljivosti M.I.T. metode s obzirom na izbor adaptacijskog pojačanja i amplitudu promjena referentne vrijednosti brzine vrtne. Ako se parametar adaptacijskog pojačanja ne postavi na mali iznos može doći do destabilizacije sustava pri većim promjenama referentne vrijednosti, dok ako je pojačanje premalo konvergencija estimiranog parametra i kvaliteta adaptacije postaje prespora, što je posebno vidljivo pri postupnoj promjeni utjecajnoj parametara (momenta inercije).
Brzina odziva dualnog regulatora ovisi o iznosu parametra pojačanja K_{RP} koje se nalazi u glavnoj grani regulacije, a izvod gradijenta je pokazao da iznos estimacije ovisi o veličini pogreške slijeđenja sustava. Time se dobiva da dualni regulator ima puno brže prilagodbu naglim promjenama momenta inercije od klasičnog kaskadnog regulatora. S druge strane, klasični kaskadni regulator lakše je postaviti za sustave s postupnom promjenom momenta inercije. Također se kod dualnog regulatora treba uzeti u obzir da parametri K_{RP} i K_{RI} nemaju istu funkciju osjetljivosti i samim time drugačije reagiraju, te treba se za svaki gradijent postaviti drugo adaptacijsko pojačanje.

Nastavak istraživanja u ovom području trebao bi biti usmjeren na izvedbu adaptivnog regulatora sa estimacijom momenta tereta, što M.I.T. metoda sama po sebi ne uzima u obzir. Adaptacija bi mogla biti izvedena preko Lyapunovljeve teorije stabilnosti, kojom se može izvesti algoritam adaptacije koji uzima u obzir moment tereta.
LITERATURA

Prilog 1. Usporedba odziva kaskadne strukture i strukture s dualnim regulatorom:

![Diagram 1: Ponašanje kaskadne strukture na referencu i poremećaj](image1.png)

![Diagram 2: Ponašanje Dualne strukture na referencu i poremećaj](image2.png)
Prilog 2. Simulink model kaskadne strukture
Prilog 3. Simulink model kaskadne strukture kruga regulacije pozicije
Prilog 4. Simulink model dualne strukture:
Prilog 5. Simulink model adaptivne kaskadne strukture
Prilog 6. Simulink model strukture adaptivnog dualnog regulatora
Prilog 7. Simulink modeli PI regulatora

Simulink model adaptivnog PI regulatora kaskadne strukture:

Simulink model pomoćnog PI regulatora dualne strukture:
Prilog 8. Simulink model estimacije K_{R2}
Prilog 9. Simulink model estimacije K_{RP}
Prilog 10. Simulink model estimacije K_{RI}
Prilog 11. Primjer inicijalizacijske skripte u MATLAB-u

% Nazivni podaci motora:
P = 200; % [W]
U = 24; % [V]
n = 3000; % [1/min]
IA = 11.8; % [A]
RA = 0.09; % [Ohm]
KA = 1/RA; % [1/Ohm]
LA = 0.54e-3; % [H]
Ta = LA/RA; % [s]
J = 3.8e-4; % [kg*m^2]
om = n*pi/30; % [rad/s]
M = P/om; % [Nm]
Km = M/IA; % [Nm/A]
Ke = (U-IA*RA)/om; % [Vs/rad]

% Filtar mjernog signala struje
Ki = 1; Ti = 1/(2*pi*1e3);
% Pojacanja svih senzora su jedinicna jer se konverzija % V -> A obavljaju izravno u kodu, odnosno brzina/pozicija % se racuna iz stanja brojila inkrementalnog davaca

% napon istosmjernog medjukruga (baterije)
Ub = U;

% pojacanje i ekvivalentno kasnjenje senzora brzine
Kw = 1;

% maksimalni ulazni napon choppera
umax = 5.0; % [V]

% Parametri tranzistorskog pretvaraca
fch = 16e3; % [Hz]
Kch = U/umax; % [V/V]
Tch = 1/fch; % [s]

% pocetni iznos struje armature i momenta tereta
IA0 = 0.0; Mt = Km*IA0;

% Stanje integratora
I0 = IA0; % [A]

Tsum = Ti + Tch + Ts/2;
% Regulacija brzine vrtnje zahtijeva diferenciranje signala pozicije + ZOH (kasnjenje Ts)
Tsumw = 2*Tsum + Ts;
%Podaci Proračuna kaskadnog Regulatora
a = 2;
Kr1 = (1/a)*(1/(Kch*KA*Ki))*(Ta/Tsum);
TI1 = Ta;
Kr2 = (1/a)*(1/(Km*(1/Ki)))*(J/Tsumw);
TI2 = a^2*Tsumw;
Teb = TI2;
D3b = 0.5;
D2b = 0.5;

%proračun dualng regulatora
D2p = 0.5;
Tep = Tsumw/D2p;
KRp = D2p*J/Km/Tsumw;
Tew = Tep;

D2 = 0.5;
D3 = 0.64;
Te = D2p*Tep/D2/D3;
KRI = J/Km/D2/Te - D2p*J/Km/Tsumw;
TRI = Te*(1 - D2*Te/Tew);
Tz = TRI/8;

%faktor adaptivnosti
gkrp = -0.20e-1;
gkri = -0.050e-1;

% Referenca i poromecaj
DwR = 300.0;
Dmt = 2.0;
Tteret = 1.5;

%trajanje simulacije
Tsim = 5;

sim('LENZE_motor_dual_adaptive_v3')
figure (1);
s subplot(311),plot(t,wr,'k--','LineWidth',2),grid on,hold on
subplot(311),plot(t,w,'r','LineWidth',2),grid on,hold on
subplot(311),plot(t,wm,'g','LineWidth',2),grid on,hold on
ylabel('$\omega [rad/s]$'),legend('Referenca','Brzina','Model')
title('Adaptivna (MIT) strukura')
s subplot(312),plot(t,ml,'k--','LineWidth',2),grid on,hold on
subplot(312),plot(t,mm,'r','LineWidth',2),grid on,hold on
ylabel('m [Nm]'),xlabel('t [s]'),legend('Poremečaj','Moment motora')
s subplot(313),plot(t,K_inertia,'b--','LineWidth',2),grid on,hold on
ylabel('J [kg*m^2]'),xlabel('t [s]')
figure(2), subplot(211), plot(t,GsensKRp,'b','LineWidth',2), grid on ylabel('Funkcija osjetljivosti KRp') subplot(212), plot(t,KRp_est,'b','LineWidth',2), grid on, hold on subplot(212), plot(t,KRp_real,'r--','LineWidth',2), grid on, hold on ylabel('K\text{r}'), xlabel('t [s]'), legend('estimirani KRp','stvarni KRp')

figure(3), subplot(211), plot(t,GsensKRI,'b','LineWidth',2), grid on ylabel('Funkcija osjetljivosti KRI') subplot(212), plot(t,KRI_est,'b','LineWidth',2), grid on, hold on subplot(212), plot(t,KRI_real,'r--','LineWidth',2), grid on, hold on ylabel('K\text{r}'), xlabel('t [s]'), legend('estimirani KRI','stvarni KRI')