Sveučilište u Zagrebu
Fakultet strojarstva i brodogradnje

Diplomski rad

Mentori: Prof. dr. sc. Biserka Runje, dipl. ing.
Student: Filip Novak

Zagreb, 2014 godina.
Izjavljujem da sam ovaj rad izradio samostalno koristeći stećena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se mentorici prof. dr. sc. Biserki Runje na pruženom povjerenju, vođenju kroz rad te za pruženo zadovoljstvo rada na jednom tako zanimljivom problemu.

Zahvaljujem se i dr. sc. Vedranu Šimunoviću na velikoj pomoći tokom izrade rada, korisnim diskusijama, razradama problema, modela, izračuna i ostaloga. Također se zahvaljujem i osobljju Laboratoriju za precizna mjerenja dužina za svu pomoć, vođenje, korisne savjete i ugordan boravak tokom rada u Laboratoriju.

Naposljetu bih se zahvalio svojoj obitelji koja mi je pružila podršku tokom svih godina studiranja.

Filip Novak
DIPLOMSKI ZADATAK

Student: Mat. br.:

Naslov rada na
hrvatskom jeziku:

Naslov rada na
engleskom jeziku:

Opis zadatka:

Zadatak zadan: Rok predaje rada: Predviđeni datumi obrane:

Zadatak zadao: Predsjednik Povjerenstva:

Prof. dr. sc. Zvonimir Guzović
Sadržaj

1. Uvod ... 11

1.2. Provоđеnje eksperimentalнog mjerenja .. 12

1.2.1. Univerzаlni mjerni uređaj .. 12

1.2.2. Mjerenje navоja (navojnig čепа) .. 14

1.2.3. Mjerenje unutarnjeg promjera .. 16

1.2.4. Mjerenje vanjskog promjera ... 18

1.3. Fizička i toplinska svojstva materijala za izraduetalona duljne ... 19

1.4. Teorijski model .. 20

2. Analitički proračun deformacije ... 23

2.1. Analitički proračun deformacije pri mjerenju navоja primjenom valjčića 23

2.2. Analitički proračun deformacije pri mjerenju unutarnjeg promjera mjernog prstena 25

2.3. Analitički proračun deformacija nastalih u procesu mjerenja vanjskog promjera valjčićа . 30

3. Numerička analiza konačних elemenata u programskom paketu Abaqus 34

3.1. Simulacija mjerenja unutarnjeg promjera .. 34

3.2. Postupak izrade modela u programskom paketu Abaqus ... 34

4. Provedba eksperimentalних mjerenja ... 60

4.1. Fizički model za mjerenje vanjskog promjera mjernих valjčićа .. 61

4.2. Način mjerenja nastalih pomaka i deformacija .. 62

4.3. Mjerni valjičić ... 63

4.4. Rezultati mjerenja ... 64

5. Usporedba rezultata ... 68

6. Zaključak .. 70

7. Literatura ... 71
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Popis slika

Slika 1 - Univerzalni mjerni uređaj DMS 680 ... 12
Slika 2 - Mjerenje nvojnog čepa [1] ... 14
Slika 3 - Metoda mjerenja s tri valjčića ... 15
Slika 4 - Mjerenje unutarnjeg promjera .. 17
Slika 5 - Mjerenje vanjskog promjera ... 18
Slika 6 - Dodir između kugle i elastične površine .. 21
Slika 7 - Dodir između valjka s V izrezom i mjernog valjčića .. 22
Slika 8 - Ovisnost deformacije o primjeni primjenje sile ... 24
Slika 9 – Skica mjerenja unutarnjeg promjera mjernim čeljustima ... 25
Slika 10 – Graf ovisnosti deformacije o primjenjenoj sili; Prsten promjera 50 mm .. 28
Slika 11 – Graf ovisnosti deformacije od primjenjenoj sili; Prsten promjera 25 mm .. 29
Slika 12 – Skica modela mjerenja promjera valjčića ... 31
Slika 13 – Graf nastalih deformacija u ovisnosti o primijenjenoj sili .. 33
Slika 14 - Izbornik Model Database i podizbornik Create Part [7] .. 35
Slika 15 - Geometrija vrha ticala .. 36
Slika 16 - Geometrija prstena ... 36
Slika 17 - Partitioniran geometrija prstena .. 37
Slika 18 - Partitioniranje vrha ticala ... 38
Slika 19 - Izbornik "Materials" .. 39
Slika 22 - Izbornik Section i podizbornik Create Section [7] .. 40
Slika 23 - Modul Assembly i podizbornik Create Instance [7] ... 41
Slika 24 - Dodir između vrha ticala i unutarnjeg površine prstena ... 41
Slika 25 - Model prstena i vrha ticala nakon povezivanja u Assembly-ju .. 42
Slika 26 - Modul steps i podizbornik Create Step [7] ... 42
Slika 27 - Modul BC's i podizbornik Create Boundary Condition [7] ... 43
Slika 29 - Displacement/Rotation izbornik [7] ... 44
Slika 30 - Rubni uvjeti dodira vrha ticala i mjernog prstena ... 45
Slika 31 - Rubni uvjeti središnjine line prstena i vrha ticala ... 45
Slika 32 - Rubni uvjet mode u smjeru osi X .. 46
Slika 33 - Zadavanje drugog rubnog uvjeta .. 46
Slika 34 – Izbornik Loads i podizbornik Create Load [7] ... 47
Slika 35 - Opterećenje na vrhu ticala ... 47
Slika 36 - Zadavanje iznosa sile .. 48
Slika 38 - Zadavanje uvjeta djelovanja u točki dodira u smjeru normale i tangente [7] 49
Slika 39 - Izrada interakcije između površina u dodiru [7] .. 50
Slika 40 - Konačni izgled površina u dodiru na modelu .. 50
Slika 41 - Opcije stvaranja mreže konačnih elemenata .. 51
Slika 42 – Postavljanje veličine čvorova konačnih elemenata .. 51
Slika 43 - Bias/single način zadavanja čvorova mreže konačnih elemenata ... 52
Slika 44 - Mreža konačnih elemenata na modelu ... 53
Slika 45 - Kreiranje job-a i moguće opcije [7] .. 54
Slika 46 - Padajući izbornik koji se otvara desnim klikom miša na Job [7] 54
Slika 47 - Prikaz deformacija na modelu ... 55
Slika 48 - Brojčani prikaz rezultata .. 55
Slika 49 - Model za analizu procesa mjerenja vanjskog promjera valjčića 56
Slika 50 - Hvatište koncentrirane sile .. 56
Slika 51 - Mreža konačnih elemenata na modelu mjerenja vanjskog promjera valjčića 57
Slika 52 - Pomaci na modelu mjerenja valjčića nastali uslijed djelovanja mjerne sile 58
Slika 53 - Najveća naprezanja na modelu mjerenja valjčića... 58
Slika 54 - Najveći pomaci modela modela mjerenja valjčića ... 59
Slika 55 - Fizički sustav mjerenja vanjskog promjera; Stol, Univerzalni mjerni uređaj, Interferometar Renishaw, Računalo, Mjerni valjčići .. 60
Slika 56 - Univerzalni mjerni uređaj.. 61
Slika 57 - Mjerne kapice .. 62
Slika 58 – Laserski interferometar, Izvor svjetlosti/detektor .. 63
Slika 59 - Set mjernih valjčića ... 64
Slika 60 – Graf kretanja vrijednosti deformacija na valjčiću promjera 4 mm 66
Slika 61 - Graf kretanja deformacija na valjčiću promjera 2,05 mm 67
Slika 62 - Graf kretanja deformacija na valjčiću 1,1 mm .. 68
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Popis tablica

Tablica 1 - Kemijski sastav legure 100Cr6.. 19
Tablica 2 - Iznos deformacija, mm .. 24
Tablica 3 – Deformacije pri mjerenju mjernog prstena 50 mm (rezultati u mm) 27
Tablica 4 - Deformacije pri mjerenju mjernog prstena 25 mm ... 28
Tablica 5 - Usporedba utjecaja mjerne sile na dva prstena različitih promjera (rezultati u mm) 29
Tablica 6 - Iznos elastičnih deformacija valjčića (rezultati u mm) ... 32
Tablica 7 - Vrijednosti najvećih pomaka u smjerovima X (U1) i Y (U2) osi te ukupno 58
Tablica 8 - Rezultati mjerenja valjčića promjera 4 mm ... 64
Tablica 9 - Rezultati mjerenja valjčića promjera 2,05 mm ... 65
Tablica 10 - Rezultati mjerenja valjčića promjera 1,1 mm ... 65
Tablica 11 - Srednje vrijednosti deformacija valjčića promjera 4 mm ... 66
Tablica 12 - Srednje vrijednosti deformacija valjčića promjera 2,05 mm ... 67
Tablica 13 - Srednje vrijednosti deformacija valjčića promjera 1,1 mm ... 68
Tablica 14 - Usporedba svih dobivenih rezultata .. 69
Popis oznaka

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_2)</td>
<td>mm</td>
<td>srednji promjer vanjskog navoja</td>
</tr>
<tr>
<td>(d_D)</td>
<td>mm</td>
<td>promjer mjernih valjčića</td>
</tr>
<tr>
<td>(\Delta l)</td>
<td>mm</td>
<td>očitanje</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>°</td>
<td>kut navoja</td>
</tr>
<tr>
<td>(P)</td>
<td>mm</td>
<td>korak navoja</td>
</tr>
<tr>
<td>(A_1)</td>
<td>mm</td>
<td>korekcija naličegavanja valjčića</td>
</tr>
<tr>
<td>(A_2)</td>
<td>mm</td>
<td>korekcija mjernih sile</td>
</tr>
<tr>
<td>(\delta B)</td>
<td>mm</td>
<td>utjecaj geometrijskih odstupanja</td>
</tr>
<tr>
<td>(\delta l_x)</td>
<td>mm</td>
<td>korekcija zbog pogreške pokazivanja uređaja</td>
</tr>
<tr>
<td>(\delta l_T)</td>
<td>mm</td>
<td>temperaturna korekcija</td>
</tr>
<tr>
<td>(\delta l_A)</td>
<td>mm</td>
<td>korekcija podešenja mjernih kapica</td>
</tr>
<tr>
<td>(\nu_1, \nu_2)</td>
<td></td>
<td>Poissonovi koeficijenti - 0,29 za čelik</td>
</tr>
<tr>
<td>(E_1, E_2)</td>
<td>N/m²</td>
<td>moduli elastičnosti - 2,05·10¹¹ N/m² za čelik</td>
</tr>
<tr>
<td>(d_I)</td>
<td>mm</td>
<td>promjer mjernog valjčića</td>
</tr>
<tr>
<td>(F)</td>
<td>N</td>
<td>mjerna sila</td>
</tr>
<tr>
<td>(d_x)</td>
<td>mm</td>
<td>stvarni promjer kontrolnog prstena na temperaturi 20 °C</td>
</tr>
<tr>
<td>(d_S)</td>
<td>mm</td>
<td>promjer referentnog prstena na referentnoj temperaturi</td>
</tr>
<tr>
<td>(\Delta \lambda)</td>
<td>mm</td>
<td>izmjerena razlika promjera kontrolnog i referentnog prstena</td>
</tr>
<tr>
<td>(\delta \lambda_I)</td>
<td>mm</td>
<td>korekcija zbog pogreške pokazivanja mjernog uređaja</td>
</tr>
<tr>
<td>(\delta \lambda_T)</td>
<td>mm</td>
<td>korekcija zbog utjecaja temperature</td>
</tr>
<tr>
<td>(\delta \lambda)</td>
<td>mm</td>
<td>korekcija zbog utjecaja Abbeove pogreške</td>
</tr>
<tr>
<td>(d_k)</td>
<td>mm</td>
<td>očitani promjer graničnog mjerila</td>
</tr>
<tr>
<td>(\delta d_x)</td>
<td>mm</td>
<td>korekcija zbog pogreške pokazivanja mjernog uređaja</td>
</tr>
<tr>
<td>(\delta \delta T)</td>
<td>mm</td>
<td>korekcija zbog utjecaja temperature</td>
</tr>
<tr>
<td>(\delta A_2)</td>
<td>mm</td>
<td>korekcija uslijed elastične deformacije</td>
</tr>
<tr>
<td>(\delta \delta A)</td>
<td>mm</td>
<td>korekcija zbog utjecaja Abbeove pogreške</td>
</tr>
<tr>
<td>(D_1)</td>
<td>mm</td>
<td>unutarnji promjer mjerenog prstena</td>
</tr>
<tr>
<td>(D_2)</td>
<td>mm</td>
<td>promjer kuglice na vrhu ticala</td>
</tr>
</tbody>
</table>
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

SAŽETAK

U Laboratoriju za precizna mjerenje dužina veliki dio mjerenja odnosi se na 1D kontaktna mjerenja. Svako kontaktno mjerenje podrazumijeva primjenu mjerne sile koja u većoj ili manjoj mjeri utječe na mjerni rezultat i njegovu nesigurnost. Ovaj utjecaj ovisi ponajprije o iznosu primijenjene sile i metodi mjerenja. Pri usporedbenim mjerenjima smatra se da je ovaj utjecaj zanemariv dok se kod neposrednih mjerenja provodi korekcija rezultata mjerenja temeljem Hertz-ovh jednadžbi. Dugogodišnje iskustvo laboratorija u mjerenju promjera ukazuje na probleme vezane uz primjenu korekcije zbog utjecaja mjerne sile. U radu je provedeno istraživanje utjecaja mjerne sile na rezultat mjerenja promjera mjernih valjčića, promjera prstena i srednjeg promjera vanjskog navoja. Uz analitičke modele izvedene na osnovi Hertz-ovih jednadžbi izrađeni su i modeli utjecaja mjerne sile pri mjerenju valjčića i promjera prstena primjenom numeričke metode konačnih elemenata.

U eksperimentalnom dijelu provedena su mjerenja valjčića različitih promjera s tri različite mjerne sile kako bi se pokazalo u kojoj mjeri je moguće postići podudarnost rezultata mjerenja s rezultatima dobivenim simulacijama.

Ključne riječi: 1D kontaktna mjerenja, mjerna sila, Hertzove jednadžbe, korekcija mjerne sile, mjerni valjčići
SUMMARY

In Laboratory for precise measurements of lengths large amount of measurements refers to 1D contact measurements. Every contact measurement implies applying force which, in smaller or greater amount influences measurement results and its uncertainty. This influence depends foremost on magnitude of applied force and the measuring method. It is considered that the influence can be ignored for comparison measurements, while for direct measurements is often used Hertzian theory of elastic contact to make result correction. However, Laboratory’s many years of experience with measuring of diameters show some irregularities in using the mentioned Hertz theory for corrections. In many cases, comparison of results with and without correction showed no difference in values. The results were good no matter if the correction was or wasn’t used. The thesis examines the influence of measuring force on measuring results, primarily on measuring of outer diameter of measuring cylinders, and on measuring of middle diameter of a threaded plug. Also, it will be checked if neglecting the influence of the measuring force is justified with comparative measurement of inner diameter of measuring ring. Alongside Hertzian Theory of Elastic Contact, there will also be made a computer model using Numerical Method of Finite Elements.

In experimental part of this thesis, work will be concentrated on measuring the outer diameter of measuring cylinders. There will be three different forces used, on three different sizes of cylinders. These results will show, in what amount, is possible to match the results with results given in computer simulations.

Key words: 1D contact measurements, measuring force, Hertz Theory of Elastic Contact, measuring force correction, measuring cylinders
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

1. Uvod

U Laboratoriju za precizna mjerenja dužina (u nastavku Laboratorij) veliki dio mjerenja odnosi se na 1D kontaktna mjerenja. Svako kontaktno mjerenje podrazumijeva primjenu mjerne sile koja u većoj ili manjoj mjeri utječe na mjerni rezultat i njegovu nesigurnost. Ovaj utjecaj ovisi ponajprije o iznosu primijenjene sile i metodi mjerenja. Pri usporedbenim mjerenjima smatra se da je ovaj utjecaj zanemariv dok se kod neposrednih mjerenja vrši korekcija rezultata mjerenja temeljem Hertz-ovh jednadžbi. Međutim, dugogodišnje iskustvo laboratorija u mjerenju promjera ukazuje na probleme vezane uz primjenu ove korekcije s obzirom da se u brojnim usporedbama pokazalo da su rezultati mjerenja bili dobri bez obzira da li je korekcija rezultata bila izvedena. U ovom radu istražiti će se utjecaj mjerne sile na rezultat mjerenja promjera.

Predmeti za mjerenje izrađeni su od čelične legure 100Cr6. Ova legura je najčešće korištena u svijetu i koristi se za izradu mjerki za umjeravanje mjernih uređaja. Mjerni uređaji se umjeravaju kako bi se osigurala sljedivost i ponovljivost mjerenja. Problem koji se razmatra u ovom diplomskom radu je prisutan na mikrorazini i kao takav zahtjeva vrlo precizno modeliranje modela za simulaciju.

U radu je dan teorijski opis modela, odnosno ponuđen je opis modela pomoću Hertzovih jednadžbi. Rezultati dobiveni matematičkim modelom provjerit će se numeričkom metodom konačnih elemenata i, naposljetku, eksperimentalnim putem. Teorijsko područje koje se bavi deformacijama pri dodiru dva tijela se naziva kontaktna mehanika. U kontaktnoj mehanici su dane formule i izvodi po kojima se izračunavaju deformacije na tijelima u dodiru.

Modeliranje i simuliranje je znanstvena disciplina koja razvija sustave za razumijevanje odnosa između dijelova sustava s jedne strane, te djelovanja sustava kao cjeline s druge strane. Da bi se osigurali uvjeti za provedbu simulacije, eksperimentalni i teorijski modeli moraju dopuštati određene preinake da bi se sustav mogao prilagoditi. Na taj način se osigurava mogućnost uspoređbe rezultata simulacije i stvarnog eksperimentalnog modela.

Naposljetku će biti provedeno eksperimentalno ispitivanje na jednoosnom uređaju. Ispitivat će se utjecaj mjerne sile na mjerenje promjera mjernih čepova, navojnih čepova i mjernih prstena.

Kao krajnji rezultat želi se utvrditi iznos mjerne nesigurnosti koja je uzrokovana elastičnom deformacijom nastalom zbog utjecaja mjerne sile.
1.2. Provоđenje eksperimentalног mjerenja

1.2.1. Univerzalni mjerni uređaj

Kako bi se provела usporedba rezultata, potrebno je izvršiti mjerenja na jednoosnom mjernom uređaju. Eksperimentalni rezultati se uspoređuju sa rezultatima dobivenima u računalnoj simulaciji napravljenoj u programskom paketu Abaqus, te će ta usporedba pokazati dali je moguće napraviti računalnu simulaciju ovakvog problema [1].

Cilj ovog rada je ustvrditi kolika je greška koju uzrokuje mjerna sila. Prvo će se razmotriti mjerenje promjera mjernih valjčića, potom mjerenje srednjeg promjera navoja i na posljedku, mjerenje promjera kontrolnog prstena.

Utjecaj mjernе sile mijenja se ovisno o slučaju, te bi kod mjerenja navoja trebao biti najveći iz razloga što je najvećа površina u dodiru tijekom mjerenja. Na slici 1 je prikazan mjerni uređaj na kojem se provode spomenuta mjerenja u Laboratoriju.

Slika 1 - Univerzalni mjerni uređaj DMS 680

Ovaj uređaj spojen je na računalo gdje se očitavaju izmjerene vrijednosti. Računalni program je standardno uključen u paket, te pružа podršku potrebnu za ispunjavanje zahtjeva norme ISO 9000:

- operater dobiva sve upute tokom procesa mjerenja
- izračuni greške zbog tolerancija se provode automatski
- procjenjuje se formulacija navoja
zapis svih podataka o mjerenju, uključujući datum kalibracije, mjesto, proceduru, standard i ostalo
mjerke su podijeljene ovisno o vrsti, odjelu, nominalnim dimenzijama i drugim kriterijima
procedura mjerenja je uvijek dostupna i može biti prikazana tokom procesa mjerenja
pruža mogućnost praćenja povijesti mjerenja, svako mjerenje je snimljeno s podacima o operateru, glavnoj mjerki i korištenoj opremi
funkcija kompenzacije temperaturnih odstupanja

Dodatne specifikacije [1]:

Područje primjene: (dimenzije od - do)

<table>
<thead>
<tr>
<th>Vanjska površina</th>
<th>0 mm - 680 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unutarnja površina</td>
<td>1 mm - 480 mm</td>
</tr>
<tr>
<td>Vanjski navoj</td>
<td>0 mm - 480 mm</td>
</tr>
<tr>
<td>Unutarnji navoj</td>
<td>3 mm - 400 mm</td>
</tr>
</tbody>
</table>

Područje mjerenja:
- Apsolutno: 100 mm
- Usporedno: 680 mm

Rezolucija:
- Standardna: 0,1 µm
- Opcijska: 0,01 µm

Nosivost: 11 kg
Napajanje: 110 V - 220 V
Gabaritne izmjere: 1300 mm x 400 mm x 480 mm
Masa: 110 kg
Mjerna sila: 0 N - 11 N

Točnost (U95) – maksimalna vrijednost kod apsolutnog područja rada: 0,35 µm

Standardno uključena oprema:
- Radni stol podesiv u svim smjerovima – okomito, vodoravno, rotacija vrha
- Jedinica za očitavanje (računalo)
- Uređaj za mjerenje navojnog čepa
1.2.2. Mjerenje navoja (navojnog čepa)

Kod ovog mjerenja potrebno je napraviti pripremu za mjerenje. Radni stol se dovodi u predviđeni položaj prilagodbom horizontalne i vertikalne osi, te kuta zakreta. Potom se postavlja držač mjerne kapice koji se učvršćuje u T profile koji su urezani u radnom stolu (slika 2). Nakon toga postavljaju se mjerne kapice i zadaje potrebna sila mjerenja. Sila se određuje dodavanjem ili oduzimanjem utega na pomičnom kraju mjerača. Pri namještanju mjernih kapica, važno je da one budu postavljene paralelno (ako se koriste ravne mjerne kapice, u slučaju sfernih kapica nije potrebna prilagodba) [2].

Nakon što je oprema pripremljena, može se nastaviti s radom. Sljedeći korak je postavljanje očitanja na nulu. Proces je opisan u prethodnom poglavlju. Kad je sve postavljeno i spremno za rad, provodi se još jedna provjera svih postavki, poput horizontalnosti stola, potrebne visine i ostaloga.

![Slika 2 - Mjerenje navojnog čepa](image)

Na slici 2 se vidi postav mjernog sustava. Na pomični i nepomični dio uređaja (osovine na slici 2) se postavljaju nosači za mjerne valjčiće. Potom se mjerni valjčići objese na nosače i dovedu u dodir sa navojem. Prije svega postavljen je mjerni čep u svoj položaj. Na jednu stranu navoja postavljaju se dva valjčića, a na drugu jedan. Treći valjčić koji je na suprotnoj (nepomičnoj strani) mora se nalaziti između prva dva valjčića. Ako nije postavljen u sredini, očitanje neće biti ispravno i mjerni postupak možemo smatrati neuspjelim.
Prije mjerenja je važno da mjerni valjčići budu temperirani tako da im se temperatura razlikuje najviše ±0,1 °C.

Slika 3 - Metoda mjerenja s tri valjčića

Promjer se izračunava prema sljedećim izrazima:

\[
d_2 = \Delta l - d_D \cdot \left(\frac{1}{\sin(\alpha/2)} + 1 \right) + \frac{P}{2} \cdot \cot \left(\frac{\alpha}{2} \right) - A_1 + A_2 + \delta B + \delta l_x + \delta l_T + \delta l_A
\]

gdje je:

\[
\Delta L = \Delta l + \delta l_x + \delta l_T + \delta l_A
\]

Ispravnim podešavanjem uređaja vrijednost korekcija \(\delta l_x, \delta l_T, \delta l_A \) biti će približno jednake nuli pa se može pretpostaviti \(\Delta L = \Delta l \).

gdje je:

- \(d_2 \) - jednostavni srednji promjer vanjskog navoja
- \(d_D \) - promjer mjernih valjčića
- \(\Delta l \) - očitanje
- \(\alpha \) - Nazivni kut navoja
- \(P \) - nazivni korak navoja
- \(A_1 \) - korekcija nalijeganja valjčića
- \(A_2 \) - korekcija mjerne sile
- \(\delta B \) - utjecaj geometrijskih odstupanja
- \(\delta l_x \) - korekcija zbog pogreške pokazivanja uređaja
- \(\delta l_T \) - temperaturna korekcija
\[\delta l_A \] - korekcija podešenja mjernih kapica

Ako se radi o simetričnom navoju s malim kutom uspona korekciju \(A_1 \) izračunati prema izrazu:

\[
A_1 = \frac{d_D}{2} \cdot \left(\frac{P}{\pi \cdot d_2} \right)^2 \cdot \cos\left(\frac{\alpha}{2}\right) \cdot \cot\left(\frac{\alpha}{2}\right), \mu m
\]

Iznos korekcije \(A_2 \) uzrokovan djelovanjem mjerne sile \(F \) izračunava se korištenjem slijedećeg izraza:

\[
A_2 = 2 \cdot \sin\left(\frac{\alpha}{2}\right)^{5/3} \left(1/2\right)^{2/3} \sqrt{\frac{9F^2}{8d_D} \left(1 - \nu_1^2\right) \left(1 - \nu_2^2\right) E_2}}, \mu m
\]

gdje su:

\(\nu_1, \nu_2 \) - Poissonovi koeficijenti - 0,28 za čelik
\(E_1, E_2 \) - moduli elastičnosti - 2·10^{11} N/m^2 za čelik
\(d_D \) - promjer mjernog valjčića
\(F \) - mjerna sila

1.2.3. Mjerenje unutarnjeg promjera

U ovom mjerenju koristi se mjerni prsten, dvije kontaktne čeljusti i paralelni nosači na kojima stoji prsten.

Radni stol je potrebno nivelerati horizontalno i vertikalno, te podesiti potrebnu visinu. Nakon podešavanja na radni stol se pričvršćuju paralelni nosači. Na pokretni i nepokretni dio učvršćuju se kontaktne čeljusti. Njihova veličina ovisi o dimenzijama prstena koji se mjeri. Velike kontaktne čeljusti se koriste za prstene kojima je promjer veći od 45 mm. Nakon postavljanja, kontaktne čeljusti se podešavaju u smjeru rotacije oko osi X. Paralelnost kontaktnih čeljusti osigurava se tako da se dvije čeljusti dovedu u kontakt jedna s drugom, te se namjesti da budu paralelno pomoću utora koji se nalaze na vanjskoj strani [3].
Na slici 4 prikazano je mjerenje kontrolnog prstena.

Kada su osigurani svi potrebni uvjeti, može se početi sa mjerenjem. Za potrebnu mjernu silu se dodaju utezi te se potom izvršava mjerenje. S obzirom da je mjerenje unutarnjeg promjera prstena usporedbeno mjerenje, prije početka mjerenja referentna vrijednost d_S postavlja se pomoću etalonskog prstena.

Analitički model mjerenja:

\[d_x = d_S + \Delta l + \delta l_i + \delta l_T + \delta l_P + \delta A_2 + \delta A \]

gdje je:

- d_x - stvarni promjer kontrolnog prstena na temperaturi 20 °C
- d_S - promjer referentnog prstena na referentnoj temperaturi
- Δl - izmjerena razlika promjera kontrolnog i referentnog prstena
- δl_i - korekcija zbog pogreške pokazivanja mjernog uređaja
- δl_T - korekcija zbog utjecaja temperature
- δl_P - korekcija zbog nepodešenosti suosnosti mjernih ticala i pravca mjerenja
- δA_2 - korekcija uslijed razlike u elastičnoj deformaciji kontrolnog i referentnog prstena
- δA - korekcija zbog utjecaja Abbeove pogreške

Ukoliko se može osigurati rad na temperaturi od 20°C onda se može zanemariti korekcija zbog utjecaja temperature. Također se i druge varijable smatraju toliko malima da ih se
može izostaviti u proračunu. Ono što je interesantno za ovaj rad je korekcija koja je nastala kao rezultat elastične deformacije. Nakon uvođenja matematičkih pojednostavljenja analitički model će dobiti jednostavniji oblik:

\[d_x = d_S + \Delta l + \delta A \]

1.2.4. Mjerenje vanjskog promjera

Pri mjerenju vanjskog promjera koristi se mjerni čep ili mjerni valjčići, nosač za čep te planparalelne kapice.

Prije početka mjerenja potrebno je podesiti opremu koja se koristi pri mjernom postupku. Kao i u prethodno opisanim postupcima podešava se razina i nagib stola, tako da on bude vodoravan i na odgovarajućoj visini u smjeru osi Z. Nosač se pričvrsti na radni stol te se u njega potom umetne i učvrsti mjerni čep. Nakon što je postavljen sustav za mjerenje potrebno ga je nivelirom i dovesti na pravu visinu kako bi se dobilo pravo očitanje. Mora se osigurati mjerenje prstena na njegovom najširem djelu [4].

Postav mjernog sustava prikazan je na slici 5. Za razliku od mjerenja unutarnjeg promjera u ovom slučaju ne koriste mjerne čeljusti.

Slika 5 - Mjerenje vanjskog promjera

Matematički model mjerenja za granična mjerila za unutarnji promjer do 100 mm.

\[d_x = d_{tx} + \delta d_{tx} + \delta d_t + A_2 + \delta d_A \]
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

gdje je:

\[d_X = d_{ix} + \delta d_{ix} + A_2 + \delta d_T + \delta d_A \]

\(d_X \) - stvarni promjer graničnog mjerila na temperaturi 20 °C
\(d_{ix} \) - očitani promjer graničnog mjerila
\(\delta d_{ix} \) - korekcija zbog pogreške pokazivanja mjernog uređaja
\(\delta d_T \) - korekcija zbog utjecaja temperature
\(A_2 \) - korekcija uslijed elastične deformacije
\(\delta d_A \) - korekcija zbog utjecaja Abbeove pogreške

Ako se i u ovaj matematički model uvedu pojednostavljenja koja smo uvodili u ostale matematičke modele, dobit ćemo pojednostavljeni izraz:

\[d_X = d_{ix} + A_2 \]

Princip mjernja promjera mjernog čepa i mjernih valjčića isti je i koriste se isti izrazi u oba slučaja.

1.3. Fizička i toplinska svojstva materijala za izradu etalona duljne (prsteni, čepovi, navojni kontrolnici itd....)

Čelična legura AISI 52100 prevedena u DIN glasi 100Cr6 [5].

Kemijski sastav ove čelične legure:

Tablica 1 - Kemijski sastav legure 100Cr6

<table>
<thead>
<tr>
<th>Element</th>
<th>Udio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Željezo, Fe</td>
<td>96,5 – 97,32</td>
</tr>
<tr>
<td>Krom, Cr</td>
<td>1,30 – 1,60</td>
</tr>
<tr>
<td>Ugljik, C</td>
<td>0,98 – 1,10</td>
</tr>
<tr>
<td>Mangan, Mn</td>
<td>0,25 – 0,45</td>
</tr>
<tr>
<td>Silicij, Si</td>
<td>0,15 – 0,30</td>
</tr>
<tr>
<td>Sumpor, S</td>
<td>≤ 0,025</td>
</tr>
<tr>
<td>Fosfor, P</td>
<td>≤ 0,025</td>
</tr>
</tbody>
</table>
Kompanija Mitutoyo koristi svoju inačicu legure navedene u točki 1, koja ima 14% kroma, i također ju je moguće otvrdnuti. Ova čelična legura ima isti modul elastičnosti, ali neki navodi govore da je moguće odstupanje od ±5 Gpa.

Mjerke izrađene od volframovog karbidara proizvodi kompanija Opus Metrology. Podaci navedeni u tablici se odnose na keramičke mjerke koje proizvodi Mitutoyo

Većina mjerki u svijetu se izrađuje od alatnog čelika naziva AISI 52100. Koeficijent toplinske ekspanzije je relevantan u slučaju veličine mjerki do 100 mm. Svaka mjerka prolazi proces otvrdnuća površine. Kod mjerki do 100 mm veličine otvrdnuće obuhvaća cijeli predmet koji je u tom slučaju homogen, dok to ne vrijedi za mjerke veće od 100 mm, jer otvrdnuće probija samo do 50 mm u predmet pa jedan središnji dio ostane neotvrdnut. Zbog toga različiti dijelovi mjerke imaju različite koeficijente toplinske ekspanzije. Koeficijent opada linearno s porastom veličine mjerke. Većina izvora daje vrijednosti od 0,27-0,30, a oni izvori koji daju pojedinačnu vrijednost daju 0,28.

1.4. Teorijski model

Teorijski model će biti napravljen na temelju Hertzovih jednadžbi koje opisuju dodir između da predmeta, bilo u točki, liniji ili površini.

Mehanika dodira:

Mehanika dodira (kontaktna mehanika) je znanost koja izučava deformaciju čvrstih tijela koja se dodiruju u jednoj ili više točaka. Fizička i matematička formulacija se temelji na mehanici materijala i mehanici kontinuuma. Fokus se pridaje izračunu koji uključuje elastičnost i viskoelastičnost. Najvažniji parametri u kontaktnoj mehanici su tlak te pojave prianjanja u smjeru normale na površinu i tlak trenja u tangencijalnom smjeru u odnosu na ravninu dodira.

Dodir između kugle i elastične površine:

Elastična kugla radijusa R (slika 6) upada u površinu do dubine d te tako stvara kontaktno područje radijusa a:
Slika 6 - Dodir između kugle i elastične površine

\[a = \sqrt{Rd - d^2} \]
\[a = \sqrt{Rd} \]

- Gdje je \(d << R \)

Sila koja se primjenjuje se odnosi prema pomaku \(d \) prema funkciji:

\[F = \frac{4}{3} E^* R^{1/2} d^{3/2} \]

- Gdje je \(E \) definiran kao:

\[\frac{1}{E^*} = \frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2} \]

- \(E_1 \) i \(E_2 \) su elastični moduli materijala koji se nalaze u kontaktu a \(\nu_1 \) i \(\nu_2 \) njihovi Poissonovi koeficijenti
Dodir između valjčića i V utora

Slika 7 - Dodir između valjka s V izrezom i mjernog valjčića

Slika 7 prikazuje teorijski model mjerenja srednjeg promjera navoja.
2. Analitički proračun deformacije

2.1. Analitički proračun deformacije pri mjerenju navoja primjenom mjernih valjčića

U ovom odjeljku se provodi analitička analiza deformacija koje se pojavljuju u procesu mjerenja na navojnom čepu sa mjernim valjčićima. Promjenjive varijable u ovom proračunu su promjer valjčića te mjerna sila koja se primjenjuje. Analitički model koji opisuje nastanak deformacije opisan je sljedećom jednadžbom [6]:

\[A_2 = 2 \cdot \frac{3}{2} \sqrt{\frac{\left(\frac{F}{2}\right)^2}{D_2}} \cdot \left(1 - \frac{\nu^2}{E}\right)^2 \]

Analitički model je u ovom slučaju sličan kao i u slučaju mjerenja unutarnjeg promjera prstena/vanjskog promjera čepa s tom razlikom da se u slučaju mjerenja navojnog čepa mora cijeli dobiveni iznos pomnožiti sa koeficijentom 2, te sa sinusom kuta navoja (kako je prikazano u sljedećoj formuli).

\[A_2 = \left(\sin \frac{\alpha}{2}\right)^{\frac{5}{3}} \cdot \left(\frac{1}{2}\right)^{\frac{2}{3}} \cdot A_2 \]

Dalje slijedi:

\[A_2 = \left(\sin \frac{\alpha}{2}\right)^{\frac{5}{3}} \cdot \left(\frac{1}{2}\right)^{\frac{2}{3}} \cdot 2 \cdot \frac{3}{2} \sqrt{\frac{\left(\frac{F}{2}\right)^2}{D_2}} \cdot \left(1 - \frac{\nu^2}{E}\right)^2 \]

Gdje je:

\(\alpha \) – Kut navoja, rad

\(F \) – Primijenjena sila, N

\(\nu \) – Poissonov koeficijent

\(E \) – Youngov modul elastičnosti, N/m²

\(D_2 \) – Promjer valjčića, mm

U tablici 2 su prikazani rezultati proračuna za zadane sile i dimenzije. Vidljiv je jasan trend porasta deformacija sa porastom sile, što je bilo i očekivano. Također, kod primjene iste sile na valjčićima različitih dimenzija je vidljiv trend smanjenja deformacija sa porastom promjera valjčića.
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Tablica 2 - Iznos deformacije, mm

<table>
<thead>
<tr>
<th>Promjer valjčića, mm</th>
<th>Deformacije (A₂), mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>2,01E-03 3,32E-03 4,86E-03</td>
</tr>
<tr>
<td>2,05</td>
<td>1,64E-03 2,70E-03 3,95E-03</td>
</tr>
<tr>
<td>4</td>
<td>1,31E-03 2,16E-03 3,16E-03</td>
</tr>
</tbody>
</table>

Na slici 8 je graf koji opisuje porast deformacije u ovisnosti o povećanju mjerne sile.

Slika 8 - Ovisnost deformacije o promjeni primjenjene sile

Na slici 8 je prikazana ovisnost deformacije o promjeni sile. Sila se povećava približnim faktorom 2, a deformacija prati povećanje sile poprilično linearno. Trend kretanja rezultata je potpuno pravilan i stoga predvidiv. Iako se ne može reći da je ovisnost deformacije o sili potpuno linearna, dobar zaključak bi bio da je ta promjena pravilna i moguće je pretpostaviti iznose deformacija za manje i/ili veće iznose sile što može biti korisno i u izračunavanju korekcije uslijed mjerenja drugih navojnih čepova sa drugim valjčićima. Da bi se metoda...
potpuno potvrdila potrebno je provesti analizu na fizičkom modelu te na računalnom modelu mjerenja. Iako u ovom radu to neće biti napravljeno, ovaj problem predstavlja zanimljiv nastavak na tematiku koja je obrađena u ovom radu.

2.2. Analitički proračun deformacije pri mjerenju unutarnjeg promjera mjernog prstena

U ovom odjeljku se provodi analitička analiza deformacija koje se pojavljuju u procesu mjerenja unutarnjeg promjera mjernog prstena na univerzalnom mjernom uređaju primjenom mjernih čeljusti. U doticaju se nalaze unutarnji plašt mjernog prstena i vrh ticala čeljusti. Na vrhu ticala se nalazi čelična kuglica pa su materijal kuglice i mjernog prstena isti. U stvarnosti se materijal prstena i materijal vrha ticala razlikuju, ali se za potrebe ovog rada smatra da su napravljeni od istog materijala\(^1\). Vrh ticala mora imati jako visoku površinsku tvrdoću zbog učestale upotrebe i kontakta sa drugim (tvrdim površinama). Vrh ticala se izrađuje od kaljenog čelika ili dragog kamenja, najčešće rubina. Na temelju pretpostavljenih činjenica da su materijali ticala i prstena jednaki odabire se potrebni matematički model za provedbu analize. Promjenjive varijable u ovom proračunu su promjer vrha ticala te mjerna sila koja se primjenjuje. Proračun će se provesti za vrhove promjera 1,1 mm, 2,05 mm i 4 mm, te mjerne sile 1,25 N, 2,05 N i 4,68 N.

Proračun se provodi prema sljedećoj formuli [6]:

\[U \text{Laboratoriju se ne provodi korekcija zbog utjecaja mjerene sile pri mjerenju promjera prstena. Smatra se da je ta korekcija zanemariva s obzirom da se radi o usporedbenom mjerenju. Pretpostavka je da će deformacije zbog mjerne sile biti približno iste na referentnom prstenu i prstenu koji se umjerava.}\]

\(^1\)
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

\[
\Delta A_2 = \sqrt{\frac{9}{2} \cdot \left(1 - \nu^2\right)^2 \cdot \frac{F^2}{D_2^3} \cdot \left(\frac{1}{D_2} - \frac{1}{D_1}\right)}
\]

Gdje su:

\(A_2\) – Ukupna elastična deformacija u točki ili liniji dodira uzduž primjenjene sile u mm

\(F\) – Primijenjena sila u N

\(\nu\) – Poissonov koeficijent

\(E\) – Youngov modul elastičnosti \(N/m^2\)

\(D_1\) – Unutarnji promjer mjerenog prstena u mm

\(D_2\) – Promjer kuglice na vrhu ticala u mm

Ova formula se dobije sljedećim izvodom iz osnovnog izraza za analitički proračun deformacije.

\[
A_2 = \sqrt{\frac{9}{2} \cdot \left(1 - \nu^2\right)^2 \cdot \frac{F^2}{D_2^3}}
\]

\[
A_2^* = \sqrt{\frac{9}{2} \cdot \left(1 - \nu^2\right)^2 \cdot \frac{F^2}{D_1^3}}
\]

Kako se ovo mjerenje provodi usporedbom metodom, odnosno mjeri se razlika u promjeru dvaju prstena, a ne apsolutna vrijednost promjera pojedinog prstena, tako se i utjecaj mjerne sile na rezultat mjerenja treba gledati kao razlika deformacija na dvama različitim prstenima. Zbog toga se mora odrediti formula koja će pokazati utjecaj razlike deformacija nastalih uslijed utjecaja mjerne sile. Formula glasi [6]:

\[
\Delta A_2 = A_2 - A_2^*
\]

Odnosno, uvrštavanjem proširenog oblika:

\[
\Delta A_2 = \sqrt{\frac{9}{2} \cdot \left(1 - \nu^2\right)^2 \cdot \frac{F^2}{D_2^3}} - \sqrt{\frac{9}{2} \cdot \left(1 - \nu^2\right)^2 \cdot \frac{F^2}{D_1^3}}
\]

\[
\Delta A_2 = \frac{9}{2} \cdot \frac{F^2}{D_2^3} \cdot \left(1 - \frac{1}{D_2} - \frac{1}{D_1}\right)
\]

Sređivanjem se dobiva konačni oblik jednadžbe:
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

$$\Delta A_2 = \sqrt[3]{\frac{9}{2}} \cdot F_3^2 \cdot \left(1 - \frac{\nu^2}{E}\right) \cdot \left(\frac{1}{D_2} - \frac{1}{D_1}\right)^{\frac{1}{3}}$$

<table>
<thead>
<tr>
<th>Promjer vrha ticala, mm</th>
<th>Deformacija (A_2), mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$F = 1,25$ N</td>
</tr>
<tr>
<td>1,1</td>
<td>1,79E-04</td>
</tr>
<tr>
<td>2,05</td>
<td>1,80E-04</td>
</tr>
<tr>
<td>4</td>
<td>1,83E-04</td>
</tr>
</tbody>
</table>

Tablica 3 – Deformacije pri mjerenju mjernog prstena 50 mm (rezultati u mm)

U tablici 3 su prikazane vrijednosti deformacija dobivene analitičkim proračunom. Može se zaključiti da iznos deformacije raste s porastom primijenjene sile, što se i očekuje. Najveće deformacije se pojavljuju pri primjeni mjerne sile od 4,68 N, a najmanje pri primjeni sile od 1,25 N. Također, može se vidjeti da najveće deformacije nastaju kod upotrebe vrhova najvećeg promjera. Rezultati dobiveni u ovom proračunu su prikazani grafički na slici 11. Iako su najveće deformacije nastale kod vrhova s najvećim promjerom, razlike u razlici deformacije pri primjeni iste mjerne sile na različitim promjerima vrhova su neznatne, odnosno pojavljuju se tek na 6. decimalnom mjestu. Ako se uzme u obzir da je rezolucija mjernog uređaja koji je predviđen za mjerenje uzoraka do 4. decimalnog mjesta, što iznosi 0,1 µm, onda je lako uvidjeti da se te razlike mogu zanemariti.
Isti proračun je proveden i za mjerni prsten promjera 25 mm zbog usporedbe razlika u nastalim (izračunatim) deformacijama na tim različitim prstenima. Deformacije vrha ticala su prikazane u sljedećoj tablici br. 4. Kako se radi o usporednom, a ne apsolutnom mjerenju, rezultati se uspoređuju između prstena dvaju različitih promjera kako bi se vidio utjecaj mjernih sile, odnosno nije dovoljno izračunati iznose deformacija za samo jedan prsten.

Tablica 4 - Deformacije pri mjerenju mjernog prstena 25 mm

<table>
<thead>
<tr>
<th>Promjer vrha ticala, mm</th>
<th>Deformacija (A_2), mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1</td>
<td>2,27E-04</td>
</tr>
<tr>
<td></td>
<td>3,75E-04</td>
</tr>
<tr>
<td></td>
<td>5,48E-04</td>
</tr>
<tr>
<td>2,05</td>
<td>2,30E-04</td>
</tr>
<tr>
<td></td>
<td>3,80E-04</td>
</tr>
<tr>
<td></td>
<td>5,56E-04</td>
</tr>
<tr>
<td>4</td>
<td>2,37E-04</td>
</tr>
<tr>
<td></td>
<td>3,92E-04</td>
</tr>
<tr>
<td></td>
<td>5,72E-04</td>
</tr>
</tbody>
</table>

Deformacije nastale na prstenu promjera 25 mm prikazane su u grafu na slici 11.
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

![Diagram](image)

Slika 11 – Graf ovisnosti deformacije od primijenjenoj sili; Prsten promjera 25 mm

Usporedbom razlika u nastalim deformacijama dobiva se pravi uvid u utjecaj mjerne sile na rezultate mjerenja, stoga je potrebno izračunati kolika je razlika. Rezultati (razlike) su prikazane u tablici 5. I u ovom slučaju sa slika 10 i 11 je vidljivo pravilno kretanje iznosa deformacija, odnosno, može se zaključiti da je i u ovom slučaju ovisnost deformacije o promjeni sile linearna.

Tablica 5 - Usporedba utjecaja mjerne sile na dva prstena različitih promjera (rezultati u mm)

<table>
<thead>
<tr>
<th>Unutarnji promjer prstena</th>
<th>50 mm</th>
<th>25 mm</th>
<th>ΔA₂, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promjer vrha ticala, mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td>1,79E-04</td>
<td>2,27E-04</td>
<td>4,83E-05</td>
</tr>
<tr>
<td>2,05</td>
<td>1,80E-04</td>
<td>2,30E-04</td>
<td>5,02E-05</td>
</tr>
<tr>
<td>4</td>
<td>1,83E-04</td>
<td>2,37E-04</td>
<td>5,46E-05</td>
</tr>
<tr>
<td>F = 2,65 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td>2,95E-04</td>
<td>3,75E-04</td>
<td>7,96E-05</td>
</tr>
<tr>
<td>2,05</td>
<td>2,97E-04</td>
<td>3,80E-04</td>
<td>8,28E-05</td>
</tr>
<tr>
<td>4</td>
<td>3,02E-04</td>
<td>3,92E-04</td>
<td>9,01E-05</td>
</tr>
<tr>
<td>F = 4,68 N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td>4,32E-04</td>
<td>5,48E-04</td>
<td>1,16E-04</td>
</tr>
<tr>
<td>2,05</td>
<td>4,35E-04</td>
<td>5,56E-04</td>
<td>1,21E-04</td>
</tr>
<tr>
<td>4</td>
<td>4,41E-04</td>
<td>5,72E-04</td>
<td>1,32E-04</td>
</tr>
</tbody>
</table>
U priloženoj tablici 5 se vidi da je razlika utjecaja mjerne sile između dva različita prstena zanemarivo mala ($\Delta A_2 \leq 0,132 \, \mu m$). Opet treba napomenuti kako je ova razlika na granici rezolucije mjernog uređaja, te svako mjerenje koje bi se provelo na takvom mjernom uređaju bilo upitno. U ovom primjeru se radi proračun razlike između dva prstena relativno velikih razlika u promjeru od 50 i 25 mm. Ukoliko bi se proračun proveo na prstenima čiji su promjeri sličniji, razlika u utjecaju mjerne sile bi bila još manja, što nas navodi na zaključak kako nema smisla provoditi simulaciju za ovaj tip mjerenja, a još lošiji rezultati bi se dobili pri eksperimentalnom mjerenju, zbog prethodno opisanog problema. Ukoliko bi se eksperiment provodio na preciznijem mjernom uređaju, onda bi se moglo razmatrati provođenje pokusa, ali i tada bi opravdanost bila upitna s obzirom na iznos deformacija koje su izuzetno male i ne predstavljaju stvarnu prepreku mjernom procesu te ih kao takve ne treba razmatrati.

2.3. Analitički proračun deformacija nastalih u procesu mjerenja vanjskog promjera valjčića

U ovom poglavlju se razmatra problem mjerenja vanjskog promjera valjčića na univerzalnom mjernom uređaju. Konkretno, provest će se analiza nastalih deformacija uslijed primjene mjernih prstena analitičkom metodom. U ovom mjernom postupku se koriste mjerni prsteni istih dimenzija (promjera) kao i u analizi deformacija nastalih pri mjerenju unutarnjeg promjera mjernih prstena. Treba napomenuti kako bi se u procesu eksperimentalnog mjerenja mjernih prstena koristila ticala, a kod mjerenja vanjskog promjera se koriste valjčići. Za provedbu analitičke metode ova činjenica je zanemariva.

Sile koje se primjenjuju su iste kao i kod mjerenja mjernih prstena, dakle iznose 1,25 N, 2,65 N i 4,68 N. Identični podaci se koriste kako bi se mogla napraviti konačna usporedba rezultata na temelju referentnih podataka.
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

U procesu mjerenja mjerni valjčić se nalazi između dviju mjernih čeljusti (kako je prikazano na slici 12). Jedna mjerna čeljust je pomična, a drug stacionarna, te se može smatrati kako se sila jednako raspodjeljuje na obje mjerne kapice koje su u dodiru s mjernim valjčićem. Dodir između mjerne kapice i valjčića se teorijski odvija u jednoj liniji u prvotnom dodiru. Kako se dodir produbljuje, odnosno počne se pojavljivati deformacija dodir iz linije prelazi u površinski (eliptični oblik).

Za proračun se koriste formule za elastični dodir valjčića sa elastičnom površinom, uvećane za faktor 2, jer se dodir događa u dvije linije, odnosno na dva mjesta. Korištena formula je ista kao i za proračun deformacija nastalih uslijed elastične deformacije kod mjerenja unutarnjeg promjera mjernih prstena.

Osnovna formula glasi:

\[A_2 = \frac{3}{2} \sqrt{\frac{9}{2} \left(\frac{F}{\Sigma} \right)^2 \cdot \frac{1 - \nu^2}{E}^2} \]
Kako je prethodno opisano, ova formula opisuje dodir u jednom mjestu (liniji), a da bi se pravilno opisao model mjerenja na univerzalnom mjernom uređaju formulu moramo uvećati za faktor 2 jer se dodir događa na dva mjesta (slika 12).

\[A_2 = 2 \cdot \left(\frac{9}{2} \cdot \frac{F^2}{D_1} \cdot \left(\frac{1 - \nu^2}{E} \right)^2 \right)^{3/2} \]

Gdje su:

- \(A_2 \) – Elastična deformacija nastala uslijed primjene mjerne sile, mm
- \(F \) – Primjenjena sila, N
- \(D_1 \) – Promjer valjčića, mm
- \(\nu \) – Poissonov koeficijent
- \(E \) – Youngov modul elastičnosti, N/m²

Tablica 6 - Iznos elastičnih deformacija valjčića (rezultati u mm)

<table>
<thead>
<tr>
<th>Promjer valjčića, mm</th>
<th>F = 1,25 N</th>
<th>F = 2,65 N</th>
<th>F = 4,68 N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deformacija ((A_2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1</td>
<td>6,34E-04</td>
<td>1,05E-03</td>
<td>1,53E-03</td>
</tr>
<tr>
<td>2,05</td>
<td>5,15E-04</td>
<td>8,51E-04</td>
<td>1,24E-03</td>
</tr>
<tr>
<td>4</td>
<td>4,12E-04</td>
<td>6,81E-04</td>
<td>9,95E-04</td>
</tr>
</tbody>
</table>

Tablica 6 prikazuje vrijednosti elastičnih deformacija nastalih na valjčiću uslijed primjene različitih mjernih sila. Opet se potvrđuje trend porasta deformacija sa porastom primjene sile, te trend smanjenja deformacije sa povećanjem promjera korištenog valjčića. Također, iz tablice se može iščitati da postoje značajne razlike u vrijednostima pri promjeni sile. Zbog toga se odabire ovaj slučaj kao referentni slučaj na kojem će se napraviti eksperimentalna mjerenja. Kao što je već opisano u prethodnim poglavljima, univerzalni mjerni uređaj na kojem će se izvoditi mjerenja ima rezoluciju od 0,1 µm.
Slika 13 – Graf nastalih deformacija u ovisnosti o primijenjenoj sili

Na slici 13 je graf koji prikazuje nastale deformacije u ovisnosti o primijenjenoj sili. Porastom sile raste i iznos deformacije.
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

3. Numerička analiza konačnih elemenata u programskom paketu Abaqus

Analiza deformacija se u ovom koraku radi u programskom paketu Abaqus. Koristi se verzija Abaqus 6.10-1. Ovaj program se pokazao kao najbolje rješenje za analiziranje deformiranja materijala u procesu mjerenja. Njegova glavna primjena je rad sa mrežama konačnih elemenata što je još jedan važan argument pri izboru programa za rad. Simulacija uključuje definiranje geometrije modela, odnosno crtanje elemenata koji se nalaze u modelu. Prije početka razrade modela potrebno je analizom utvrditi moguća pojednostavljenja na modelu kako bi se ubrzao ukupni proces izrade te kako bi se smanjilo opterećenje procesora pri provedbi simulacije. Sve ovo rezultira u krajnosti kraćem vremenom trajanja kako izrade modela, tako i provedbe simulacije. Svaki model je specifičan za sebe i ne može se koristiti za izradu drugih modela mjerenja, već je svaki model potrebno zasebno definirati.

Prilikom modeliranja, osim geometrije modela, potrebno je jasno i jednoznačno odrediti rubne uvjete, opterećenja te ostale parametre kako bi se osigurala vjernost modela stvarnom stanju.

Pri izradi modela prvo se modeliraju svi potrebni dijelovi sustava koji se analizira. U prvom primjeru koji se vidi na slici 15 koriste se dva elementa sustava, koja su odabrana nakon razmatranja, prilagodbe i pojednostavnjenja sustava, a to su mjerni prsten i ticalo mjernih čeljusti (kuglica).

3.1. Simulacija mjerenja unutarnjeg promjera

Geometrija mjernog prstena je konstanta, odnosno neće se mijenjati tokom provedbe analize. Njegov unutarnji promjer je 50 mm. U prvoj simulaciji počinje se od najmanje mjerne sile \(F = 1,25 \) N i najmanjeg promjera ticala \(2r = 1,1 \) mm, te se u sljedećem koraku uzima sljedeći veći promjer ticala; promjeri ticala su izneseni u tablicama 3 i 4. Nakon provedbe analize svih promjera ticala upotrebom najmanje mjerne sile prelazi se na sljedeće mjerne sile koje su također prikazane u tablicama 3-4.

Na početku, da bi se uopće mogla provesti analiza potrebno je provesti određene korake. Prvo se moraju dimenzionirati elementi sustava koji će se koristiti u analizi.

3.2. Postupak izrade modela u programskom paketu Abaqus

Nakon pokretanja Abaqusa odabire se izrada novog modela (New Model Database) u početnom izborniku koji se pojavio nakon pokretanja programa. U stablu Model-1 dva puta kliknuti lijevu tipku miša (nadalje LTM) na Parts (slika 14). Nakon dvostrukog klikla LTM na
Parts otvara se podizbornik Crate Part (slika 14). U podizborniku Create Part se odabire 2D Planar jer se radi sa 2D elementima. Također se treba izabrati Solid u izborniku Shape i Deformable u izborniku Type.

![Model Database i podizbornik Create Part](image)

Slika 14 - Izbornik Model Database i podizbornik Create Part [7]

Sljedeći korak u izradi modela je crtanje geometrije elemenata. Prvo se crta prsten, odnosno polovica prstena. Razmatranjem opterećenja i rubnih uvjeta uviđa se da je moguće provesti analizu na pojednostavljenom modelu u kojem se koristi samo polovica prstena i cijeli vrh ticala.

UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Slika 15 - Geometrija vrha ticala

Slika 16 - Geometrija prstena
Određuje se iznos unutarnjeg i vanjskog promjera. Kada su zadani svi potrebni parametri, dovoljno je kliknuti na Done. Tada se element izgenerira i spreman je za daljnji rad. Nakon generiranja, na prstenu se može napraviti particioniranje (slika 17) određenih dijelova pritiskom na ikonu . Particioniranje se radi zbog lakšeg određivanja mjesta dodira, ili da bi se odijelili dijelovi na kojima se želi usitniti mreža konačnih elemenata. Drugi postupak za usitnjavanje mreže koji se koristi je postupak adaptivnosti. Na nekim mjestima za koja se zna da ne trpe nikakva opterećenja se ostavljaju veći konačni elementi zbog jednostavnijeg i bržeg procesa provedbe analize. Tako se rasterećuje procesor i smanjuje se ukupno vrijeme trajanja analize.

Nakon što se nacrta i particionira prvi element ako je to potrebno, prelazi se na crtanje drugog elementa ovog sustava, a to je vrh ticala mjerne čeljusti. Njegova geometrija je određena polumjerom vrha. Radi pojednostavnjenja, umjesto gornje polovice kuglice ticala stavlja se pravokutna geometrija. Na taj način će se kasnije lakše zadati sila koja utječe na sustav. Na slici 17 se vidi geometrija drugog elementa s određenim paricijama (u crvenom pravokutniku).

![Slika 17 - Particionirana geometrija prstena](image)

Konkretno u ovom slučaju želi se ograditi područje koje je pod izravnim utjecajem opterećenja, odnosno koje je u izravnom kontaktu s vrhom ticala. Iskustveno se zna da će se
u tom području javiti najveća opterećenja i deformacije, pa se u tom području želi postići veća točnost rezultata. Veća točnost rezultata se osigurava usitnjavanjem mreže samo u tom području. Na taj način se ne preopterećuje proces analiziranja.

Na drugom elementu, odnosno na vrhu ticala, potrebno je particioniranje kako bi se točno mogla odrediti točka dodira između vrha ticala i prstena.

Slika 18 - Particioniranje vrha ticala

Sljedeći korak nakon crtanja i generiranja potrebnih elemenata sustava je zadavanje materijala. Dvostrukim klikom LTM na Materials (slika 19) u izborniku otvara se prozor za zadavanje materijala (slika 20). U podizborniku Edit Material klikne se na Mechanical, zatim na izbornik Elasticity te na Elastic. Nakon definiranja potrebnih parametara klikne se na OK.
Kod zadavanja materijala važno je zadati Youngov modul elastičnosti i Poissonov koeficijent. U mjeriteljstvu je u upotrebi posebna čelična legura čije su karakteristike navedene u poglavlju "Fizička i toplinska svojstva materijala za izradu mjernih". Youngov modul elastičnosti ovog čelika iznosi 205 GPa, a Poissonov koeficijent 0,29.

Desnim klikom na izbornik Materials (slika 21) otvaramo podizbornik u kojem odabiremo opciju Create (slika 21).
U prozoru Edit Materials otvori se podizbornik Mechanical u kojem se zadaju svojstva materijala koja su već navedena \((E = 205 \text{ GPa} \text{ i } \nu = 0,29)\).

Slika 22 - Izbornik Section i podizbornik Create Section [7]

Sljedeći korak je dovođenje elemenata u vezu. Ovaj korak se radi u modulu Assembly (slika 23). Elemente treba prvo "ubaciti" u Assembly, a to se radi tako da se dva puta klikne LTM na Instances (slika 23). U podizborniku Create Instance se odabire element po element, te se on pojavljuje na radnoj površini. U podizborniku Instance Type označiti Indenpendent (slika 23), te Auto-offset, radi jednostavnijeg rada u nastavku.
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Naredbom *Auto-offset* se elementi automatski odmiču jedan od drugoga pri ubacivanju, odnosno izbjegava se preklapanje površina što u krajnosti pojednostavljuje zadavanje veza između elemenata.

Elementi se dovode u kontakt naredbom *Create Constraint: Coincident Point*. Odabiru se točke koje su unaprijed određene za kontakt izradom particija na pojedinom elementu (slika 24). Ovaj model opisuje dodir između vrha ticala i unutarnjeg plašta prstena, stoga se dodir teoretski događa u jednoj točki. Točka dodira je vrh na vrhu ticala i sredina prstena (kako je prije određeno partitioniranjem prstena. Ovo je samo jedan od načina kojima je moguće dovesti u kontakt dva elementa.

Slika 23 - Modul Assembly i podizbornik Create Instance [7]

Slika 24 - Dodir između vrha ticala i unutarnje površine prstena

U sljedećem koraku se zadaje *Step* dvostrukim klikom na modul *Steps* u stablu. U podizborniku *Create Step* pod *Procedure type* odabradit *General* te *Static, General*. (sve slika...
26) Ovo je korak u kojem određujemo vrstu analize. Dan je izbor između mnogo vrsta opterećenja. Za ovaj slučaj opterećenja odabere se \textit{Static, General} način rada.

\textit{Slika 25 - Model prstena i vrha ticala nakon povezivanja u Assembly-ju}

\textit{Slika 26 - Modul steps i podizbornik Create Step [7]}
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Slika 27 - Modul BC’s i podizbornik Create Boundary Condition [7]

Na slici 27 se vidi podizbornik Edit Boundary Condition, koji se otvara odabirom Symmetry/Antisymmetry/Encastre rubnih uvjeta. Kako je prikazano na slici 27, postoji veliki izbor raznih kombinacija rubnih uvjeta. Međutim ovaj način ne dopušta kontrolu nad svakim rubnim uvjetom pa se zato koristi Displacement/Rotation način zadavanja rubnih uvjeta (slika 28). Ovisno o tome koji se rubni uvjet zadaje, odabire se da je ili U_1 ili U_2 ili $UR_3 = 0$, ili bilo koja kombinacija između ovih triju uvjeta. Označavanjem kućice ispred uvjeta definira se da je taj uvjet 0, odnosno da je onemogućeno gibanje elementa u smjeru X ili Y osi. Uvjet UR_3 oznaka je za rotaciju oko Z osi.

Slika 28 - Edit Boundary Condition [7]
Vrlo je važno postaviti rubne uvjete pravilno na svim rubovima elemenata kako bi se na kraju dobili točni rezultati, odnosno da bi se uopće mogla provesti analiza. Na slikama 29 i 30 su prikazani rubni uvjeti za ovaj primjer. Također treba imati na umu da se ovdje koristi simetričnost elemenata, te da na rubovima gdje su elementi "odrezani". Na slici 29 su prikazani rubni uvjeti na mjestu dodira prstena i vrha ticala. Model se mora osigurati od gibanja u smjeru osi X i Y. Središnjoj liniji se zabranjuje gibanje u smjeru osi Y, odnosno zaključava se rubni uvjet gibanja u smjeru osi Y, a to je uvjet U_2. Gibanje u ostalim smjerovima mora biti dopušteno (slika 30)
Da bi se model osigurao od gibanja potrebno je zadati rubne uvjete simetričnosti na vanjskim krajevima polovice prstena (slika 31). U ovom rubnom uvjetu se zabranjuje gibanje u smjeru osi Y (slika 32) i na taj način smo osigurali cijeli model od gibanja u smjeru bilo koje osi. Ovaj
slučaj pokazuje kako se to radi na modelu u 2 osi. Ako bi se radilo na 3D modelu, onda bi zadavanje rubnih uvjeta bilo nešto kompliciranije.

Slika 32 - Rubni uvjet mode u smjeru osi X

Slika 33 - Zadavanje drugog rubnog uvjeta
U izborniku Steps se otvori podizbornik Step 1. Dvostrukim klikom LTM na Loads otvara se podizbornik Create Load (slika 33).

![Create Load](image)

Slika 34 – Izbornik Loads i podizbornik Create Load [7]

U podizborniku Create Load se daje veliki izbor načina zadavanja opterećenja. Može se birati između koncentrirane sile, momenta, tlaka, površinske napetosti, tlaka, sila koja djeluje jednoliko na cijelo tijelo, linijskog opterećenja, gravitacijskog opterećenja i mnogih drugih opterećenja. I ovdje se primjenjuje princip maksimalnog mogućeg pojednostavljenja modela, pa se odabire opterećenje uzrokovano koncentriranom silom u jednoj točci na vrhu ticala (slika 34).

![Opterećenje na vrhu ticala](image)

Slika 35 - Opterećenje na vrhu ticala
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

![Edit Load](image)

Slika 36 - Zadavanje iznosa sile

![Create Interaction Property](image)

Slika 37 - Modul Interaction Properties i podizbornik Create Interaction Property [7]
Nakon što se odabere Contact iz izbornika Create Interaction Property treba se zadati uvjeti djelovanja u smjeru tangente i normale u točki dodira. Tangencijalno djelovanje se zadaje kao Frictionless, odnosno bez trenja, a u smjeru normale kao Hard Contact (slika 38). Na ovaj način se određuje način ponašanja elemenata u točki dodira.

Slika 38 - Zadavanje uvjeta djelovanja u točki dodira u smjeru normale i tangente [7]

Dvostrukim klikom na izbornik Interactions otvara se podizbornik Create Interaction (slika 39). U podizborniku Create Interaction se nudi izbor različitih vrsta dodira. Ako je potrebno, može se dati zasebni naziv svakom kontaktu (interakciji između dvije površine). Ovo se koristi kada se definira više od jednog kontakta radi lakšeg snalaženja.

U podizborniku Create Interaction se odabire Surface-to-Surface vrsta kontakta (slika 39), te se klikne na Continue. Potom je potrebno odrediti površine u kontaktu. U ovom načinu rada (Surface-to-Surface) se moraju odabrati Master i Slave površine. Master i Slave površine su važne zbog načina na koji će se površine deformirati u provedbi analize. Čvorovi koji se nalaze na Slave površini ne mogu penetrirati u površinu formiranu na Master strani. Također se mogu odrediti boje pojedine površine ukoliko je potrebno, u svrhu lakšeg raspoznavanja površina kada postoji ima više kontakata.

U podizborniku Edit Interaction se moraju namjestiti dodatne opcije kako bi model radio. Potrebno je označiti opciju Adjust only to remove overclosure pod karticom Slave Adjustment.
Na slici 40 se vidi konačni izgled površina u dodiru na modelu. Za master površinu je odabrana površina unutarnjeg ruba prstena jer se ne želi postići prodiranje vrha ticala u prsten. Kao što je već spomenuto, u stvarnom modelu je vrh ticala rađen od kaljenog čelika, te vjerojatno ne trpi nikakvu deformaciju.
Kada se definiraju površine u dodiru, može se nastaviti sa izradom modela. Sljedeći korak je definiranje mreže konačnih elemenata. U Mesh modulu definiramo obilježja mreže konačnih elemenata. Klikom na ikonu Seed Edges (slika 41) odabire se opcija definirana veličine elemenata po pojedinom rubu elementa modela. Na taj način se mreža može pogustiti gdje je potrebno, ili prorijediti na drugim mjestima.

Slika 41 - Opcije stvaranja mreže konačnih elemenata

Vanjski rub prstena ne trpi gotovo nikakva opterećenja, pa ni nije potrebno imati jako gustu mrežu na tom rubu. S druge strane, na unutarnjem rubu prstena se očekuju veća opterećenja pa se tamo treba postaviti nešto manji razmak čvorova mreže. Na mjestu dodira se događa gotovo cijela deformacija pa je na tom mjestu poželjno imati najgušću mrežu. Postavljeni razmaci elemenata se vide na slici 42.

Slika 42 – Postavljanje veličine čvorova konačnih elemenata

Na mjestu dodira se osim smanjenja razmaka između čvorova koristi još jedna opcija pod nazivom Bias/Single. Ta opcija omogućava postepenu propagaciju veličine čvorova između dvije vrijednosti. Najveći element ne smije preći gornju zadanu vrijednost, a najmanji ne smije biti manji od donje zadane vrijednosti. Na taj način se dobiva najgušća raspodjela čvorova na mjestu dodira dvaju površina, te postepeno sve rjeđa kako raste udaljenost od mjesta dodira. Kako to u simulaciji izgleda, prikazano je na sljedećoj slici 43.
Kod ovakvog načina zadavanja čvorova mreže konačnih elemenata važno je i točno zadati smjer propagacije. Smjer propagacije se može mijenjati klikom na ikonu Flip (slika 43). Za najmanju vrijednost veličine elementa zadana je vrijednost 0,0064 mm, a najveća 0,32 mm. Najmanja vrijednost bi trebala biti manja od najmanje deformacije koja se očekuje u tom području. U ovom slučaju se očekuju mikrometarske deformacije, te se stoga i najmanja vrijednost zadaje u mikrometarskom području.

Kod zadavanja veličine čvorova na unutarnjem rubu prstena zadaje se veličina 2 mm, a na vanjskom rubu 3 mm.

Veličina čvorova na vrhu ticala morala bi se u idealnom slučaju poklapati sa veličinom čvorova na strani unutarnjeg ruba prstena. Iz tog razloga se na vrhu ticala zadaju veličine čvorova sa Bias/Single načinom rada na mjestu dodira s unutarnjim rubom prstena. Na daljnjem rubu vrha ticala zadaje se konstantna veličina konačnih elemenata koja iznosi 0,32 mm.

Nakon zadavanja veličine konačnih elemenata na svim rubovima treba se zadati način rasporeda elemenata. Programski paket Abaqus je programiran tako da raspodjeli mrežu konačnih elemenata na najjednostavniji mogući način ako se ne odredi drugačije. Zbog toga treba klikom na ikonu Assign Mesh Controls odrediti strukturiranu raspodjelu konačnih elemenata. Gotova mreža konačnih elemenata se može vidjeti na slici 44.
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Nakon provedene analize kraj ikone Job mora pisati u zagradama Completed da bi analiza bila izvršena. Nakon izvršavanja analize mogu se pregledati rezultati analize desnim klikom na miš, te odabirom opcije Results (slika 46). Kod prikaza rezultata analize postoji velik izbor mogućih prikaza. U ovom slučaju najzanimljiviji prikazi su oni koji pokazuju opterećenja na mjestu dodira te iznose nastalih deformacija. Svi rezultati su prikazani bez mjernih jedinica, odnosno svi rezultati su prikazani u osnovnim mjernim jedinicama. To znači da je opterećenje izraženo u N/m², a pomaci u mm. Isto tako svi ulazni podaci se moraju zadati u osnovnim mjernim jedinicama.

Nakon obavljene analize prelazi se na prikaz rezultata. Odabire se prikaz Plot Contours on Undeformed Shape. To je način prikaza u kojem se deformacije, pomaci, opterećenja i ostalo opisuju gradacijom boja na površini analiziranog elementa (slika 47).
Brojčani iznosi deformacija su prikazani u gornjem lijevom kut radne površine i izgledaju kako je prikazano na slici 48.

Slika 47 - Prikaz deformacija na modelu

Slika 48 - Brojčani prikaz rezultata
Ovaj isti način izrade se primjenjuje i za drugi model koji se analizira u ovom radu, simulacija deformacije na modelu mjerenja valjčića. Kod modela valjčića elementi su polovica valjčića i jedna mjerna kapica. U ovom modelu se opet koristi princip pojednostavljenja pa se koristi samo polovica stvarnog modela koristeći duplu silu kako bi se dobio isti rezultat.

Elementi modela se nacrtaju, daju im se karakteristike materijala, te se sekcioniraju na potrebnim mjestima na način kako je detaljno opisano u primjeru mjerenja unutarnjeg promjera prstena. Assembly ovog modela je prikazan na slici 49.

Valjčić i mjerna kapica se dodiruju u jednoj točci pa je particioniranje opet korisno da bi se označile točke dodira na valjčiću i kapici. Rubni uvjeti su postavljeni tako da se donji rub polovice valjčića ne smije gibati u smjeru osi Y, te tako da središnja linija nema pomaka u smjeru osi X. Na taj način je određen cijeli sustav jer se radi o 2D problemu. Opterećenje se zadaje kao koncentrirana sila u jednoj točci. Kao hvatište sile se odabire presjecište linija označeno na slici 50.
Analizu treba provesti za sile kako je određeno u analitičkom dijelu zadatka, a to su sile od: 1,25 N, 2,65 M i 4,68 N. Nakon svake pojedine analize sa svim zadanim silama treba se promijeniti promjer valjčića. Promjeri valjčića variraju kako je zadano u analitičkom proračunu: 1,1 mm, 2,05 mm i 4 mm. Kod promjene promjera valjčića se ne radi cijeli nov model sa novim elementima, već je dovoljno samo promijeniti veličinu promjera valjčića, ne mijenjajući ostale parametre sustava, osim sile.

Mreža konačnih elemenata se radi otprilike istih proporcija kao i u prethodno opisanom modelu, sa primjenom propagacije sve manjih veličina konačnih elemenata približavanjem točki dodira valjčića i kapice. Mreža konačnih elemenata za ovaj model je prikazana na slici 51.

Zbog pravilnosti oblika modela mjerenja vanjskog promjera valjčića može se napraviti potpuno strukturirana mreža konačnih elemenata. Ova činjenica, međutim, nema nikakovog utjecaja na točnost rezultata, već je više kozmetičke naravi. Druga prednost ovakve raspodjele mreže KE je poklapanje čvorova KE na strani vanjskog ruba valjčića i na strani ruba mjerne kapice.

Kada su određeni rubni uvjeti i opterećenje, može se zadati Job, te provesti analiza deformacija i opterećenja. U ovom primjeru se najveće opterećenje očekuje na mjestu dodira kapice i valjčića, dok se najveći pomak očekuje na rubovima kapice. Najveći pomak se očekuje na rubovima kapice jer se na tim mjestima stvara najveći moment. Grafički rezultati simulacije su prikazani na slikama 52 i 53.

Prema očekivanjima najveći pomaci se javljaju uz rubove mjerne kapice, a najveće deformacije na mjestu dodira mjerne kapice i valjčića.
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Slika 52 - Pomaci na modelu mjerenja valjčića nastali uslijed djelovanja mjerne sile

Slika 53 - Najveća naprezanja na modelu mjerenja valjčića

Vrijednosti najvećih pomaka su prikazane u tablici 7, te u grafovima na slici 54.

Tablica 7 - Vrijednosti najvećih pomaka u smjerovima X (U1) i Y (U2) osi te ukupno

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>4 mm</th>
<th>2,05 mm</th>
<th>1,1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iznos deformacije, mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 = 1,25 N</td>
<td>6,17E-04</td>
<td>6,09E-04</td>
<td>6,23E-04</td>
</tr>
<tr>
<td>F2 = 2,65 N</td>
<td>1,22E-03</td>
<td>1,22E-03</td>
<td>1,22E-03</td>
</tr>
<tr>
<td>F3 = 4,68 N</td>
<td>2,06E-03</td>
<td>2,05E-03</td>
<td>2,05E-03</td>
</tr>
<tr>
<td>U1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 = 1,25 N</td>
<td>-4,29E-04</td>
<td>-4,13E-05</td>
<td>-4,15E-05</td>
</tr>
<tr>
<td>F2 = 2,65 N</td>
<td>-9,45E-04</td>
<td>8,75E-05</td>
<td>8,76E-05</td>
</tr>
<tr>
<td>F3 = 4,68 N</td>
<td>-1,55E-04</td>
<td>1,54E-04</td>
<td>1,54E-04</td>
</tr>
<tr>
<td>U2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 = 1,25 N</td>
<td>-6,15E-04</td>
<td>-6,08E-04</td>
<td>-6,22E-04</td>
</tr>
<tr>
<td>F2 = 2,65 N</td>
<td>-1,22E-03</td>
<td>-1,22E-03</td>
<td>-1,22E-03</td>
</tr>
<tr>
<td>F3 = 4,68 N</td>
<td>-2,06E-03</td>
<td>-2,04E-03</td>
<td>-2,05E-03</td>
</tr>
</tbody>
</table>
Iz priloženih se rezultata vidi da promjena primijenjene mjerne sile nema gotovo nikakvog utjecaj na promjenu iznosa pomaka. Isto tako je vidljiv trend povećanja pomaka sa smanjenjem promjera mjerenog valjčića za isti iznos primijenjene mjerne sile. Također iznos povećanja se smanjuje za isti koeficijent neovisno o iznosu sile. Kada bi se provede daljnje analize sa drugim promjerima i silama mogao bi se očekivati jednak trend povećanja, odnosno smanjenja pomaka.

Slika 54 - Najveći pomaci modela mjerenja valjčića
4. Provedba eksperimentalnih mjerenja

U ovom poglavlju se opisuje provedba eksperimentalnih mjerenja, korištena oprema i dobiveni rezultati.

Nakon izrade simulacijskog i analitičkog modela treba se izraditi i fizički model mjerenja. Fizička mjerenja se provode na modelu mjerenja vanjskog promjera valjčića. Da bi se mogla provesti usporedba svih dobivenih rezultata potrebno je imati i treću, odnosno eksperimentalnu verziju. Na temelju ovog seta rezultata će se donijeti konačni zaključak o smislenosti i mogućnosti izvedbe simulacijskih analiza u programskom paketu Abaqus, odnosno o točnosti analitičkih izračuna.

Sustav za mjerenje vanjskog promjera mjernih valjčića sačinjava se od univerzalnog mjernog uređaja proizvođača Carl Zeiss (slika 55), interferometra Renishaw (slika 56), računala, seta mjernih valjčića (slika 57) i mramornog mjernog stola (slika 55).
4.1. Fizički model za mjerenje vanjskog promjera mjernih valjčića

Univerzalni mjerni uređaj proizvođača Carl Zeiss (slika 56) se odabire zbog izuzetno krutosti sustava koju posjeduje. Područje mjerenja je u mikrometarskom području te je stoga potreban izuzetno precizan mjerni uređaj koji će imati što manje oscilacije u rezultatima mjerenja. Mjerni uređaj je postavljen na mramornu mjernu ploču koja mora biti postavljena horizontalno. Oko mjesta postavljanja mjernog sustava ne smiju postojati nikakvi uzroci vibracija koji bi mogli utjecati na mjerenja. Čak i najmanje vibracije mogu uzrokovati varijacije u mjernim rezultatima te je stoga prilikom mjerenja potrebno svesti kretanje oko postava mjernog sustava na minimum. Sljedeći nužan uvjet koji mora biti ispunjen kako bi mjerenja bila ispravna je konstantna temperatura u prostoriji u kojoj se mjerenje provodi. Sobna temperatura mora iznositi 20 °C. Promjena temperature od samo nekolika stupnjeva Celzijevih može rezultirati proširivanjem ili stezanjem materijala valjčića i/ili mjernih kapica do ≈ 1 µm. Ako se uzme u obzir da očekivane deformacije koje nastaju utjecajem mjerne sile iznose između 0,1 µm – 2 µm, onda je lako vidljivo zašto je važno održavati konstantu temperaturu prostorije. Na mjernom uređaju se može podešavati mjerna sila. Mjerne sile koje će se primjenjivati su one s kojima je rađen analitički proračun i simulacija, dakle 1,25 N, 2,65 N i 4,68 N. Mogućnost promjene mjerne sile na ovom uređaju je ograničena na ove zadane vrijednosti pa se stoga prvo provelo ispitivanje mjernih sila, koje su tek nakon toga bile primijenjene u analitičkom računu i simulacijskom modelu.
Mjerna sila se mijenja dodavanjem ili micanjem utega na pomičnu os mjernog uređaja. Kako je ovo jednodimenzionalni mjerni uređaj mjerenja se provode samo u jednoj osi, sa jednom pomičnom i jednom nepomičnom stranom. Kako je već opisano, na pomičnoj strani su obješeni utezi koji uzrokuju mjernu silu. Prije početka mjerenja se mora izmjeriti masa svakog pojedinog utega koji se koristi u procesu mjerenja kako bi se osigurala točnost dobivenih rezultata.

Na univerzalni mjerni uređaj se stavljaju ravne mjerne kapice izrađene od kaljenog čelika. Prije početka mjerenja potrebno je provesti kalibraciju mjernog sustava, a to uključuje i postavljanje mjernih kapica u pravilni položaj. Mjerne kapice (slika 57) moraju biti paralelne u smjeru sve tri koordinatne osi, te moraju biti na jednakoj visini.

Slika 57 - Mjerne kapice

4.2. Način mjerenja nastalih pomaka i deformacija

U svrhu dobivanja rezultata, na mjerni uređaj je ugrađen laserski interferometar proizvođača Renishaw. Univerzalni mjerni uređaj na sebi ima ugrađen mjerni sustav koji nije dovoljno osjetljiv za s obzirom na rezultate koji se kreću u veličinama od nekoliko desetinki mikrometra te je stoga potrebno ugrađivanje preciznijeg mjernog sustava poput interferometra (slika 58).
Interferometar se sastoji od izvora svjetlosti (laser, slika 58), zrcala, interferometra i detektora. Iz izvora svjetlosti zraka dolazi na djelitelj snopa koji dio svjetlosti propušta prema zrcalu, a dio vraća prema detektoru. Zraka svjetlosti koja se reflektirala od zrcala vraća se na djelitelj snopa te odlazi u detektor gdje se uspoređuje sa referentnom zrakom. Razlike u valnoj duljini dvaju snopa svjetlosti daju informaciju o duljini, širini ili visini predmeta koji se mjeri. Na ovaj način se mogu dobiti mjerenja u području ispod 0,1 µm. Interferometar je spojen preko USB veze s laptopom na kojem se preko programskog paketa prikazuju rezultati mjerenja (slika 56).

4.3. Mjerni valjčići

Analitičkim se proračunom pokazalo da je najveći utjecaj mjerne sile na mjerenju vanjskog promjera, odnosno kod mjerenja mjernih valjčića. Mjerni valjčići (slika 59) su izrađeni od čelične legure opisane u poglavlju 1.3.. Veličine promjera korištenih mjernih valjčića se moraju poklapati sa veličinama promjera mjernih valjčića korištenih u analitičkom proračunu i simulacijskoj analizi u programskom paketu Abaqus. To su valjčići promjera 1,1 mm, 2,05 mm i 4 mm.
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Slika 59 - Set mjernih valjčića

4.4. Rezultati mjerenja

Mjerenje svakog valjčića ponavljalo se 15 puta za istu mjernu silu kako bi se izračunala srednja vrijednost sa standardom devijacijom. Rezultati su prikazani u tablicama 8 – 10.

Tablica 8 - Rezultati mjerenja valjčića promjera 4 mm

<table>
<thead>
<tr>
<th>Mjerna sila</th>
<th>Promjer valjčića , mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 = 1,25 N</td>
<td></td>
</tr>
<tr>
<td>3,9998</td>
<td>4,0001</td>
</tr>
<tr>
<td>3,9995</td>
<td>3,9994</td>
</tr>
<tr>
<td>3,9995</td>
<td>3,9995</td>
</tr>
<tr>
<td>3,9998</td>
<td>3,9997</td>
</tr>
<tr>
<td>3,9997</td>
<td>3,9997</td>
</tr>
<tr>
<td>3,9997</td>
<td>3,9997</td>
</tr>
<tr>
<td>3,9992</td>
<td>3,9991</td>
</tr>
<tr>
<td>3,9991</td>
<td>3,9991</td>
</tr>
<tr>
<td>3,9999</td>
<td>3,9999</td>
</tr>
</tbody>
</table>

F2 = 2,65 N	
3,9993	3,9998
3,9998	3,9995
3,9992	3,9994
3,9994	3,9994
3,9994	3,9994
3,9996	3,9994
3,9994	3,9994
3,9992	3,9991
3,9991	3,9991
3,9999	3,9999

F3 = 4,68 N	
3,9999	3,9996
3,9995	3,9994
3,9991	3,9993
3,9994	3,9994
3,9994	3,9994
3,9999	3,9999
3,9999	3,9999
3,9999	3,9999
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Tablica 9 - Rezultati mjerenja valjčića promjera 2,05 mm

<table>
<thead>
<tr>
<th>Mjerna sila</th>
<th>Promjer valjčića , mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 = 1,25 N</td>
<td>2,0496</td>
</tr>
<tr>
<td>F2 = 2,65 N</td>
<td>2,0495</td>
</tr>
<tr>
<td>F3 = 4,68 N</td>
<td>2,0492</td>
</tr>
</tbody>
</table>

Tablica 10 - Rezultati mjerenja valjčića promjera 1,1 mm

<table>
<thead>
<tr>
<th>Mjerna sila</th>
<th>Promjer valjčića , mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 = 1,25 N</td>
<td>1,0994</td>
</tr>
<tr>
<td>F2 = 2,65 N</td>
<td>1,0992</td>
</tr>
<tr>
<td>F3 = 4,68 N</td>
<td>1,0991</td>
</tr>
</tbody>
</table>

Na slikama 60 – 62 su prikazani grafovi kretanja srednjih vrijednosti deformacija uzrokovanih primjenom mjerne sile.
Slika 60 – Graf kretanja vrijednosti deformacija na valjčiću promjera 4 mm

Vrijednost promjera valjčića 4 mm za $F = 0$ N:

$$D = 3,999602 \text{ mm}$$

Tablica 11 - Srednje vrijednosti deformacija valjčića promjera 4 mm

<table>
<thead>
<tr>
<th>F, N</th>
<th>Srednja vrijednost promjera valjčića</th>
<th>A_2, mm</th>
<th>A_2, µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25</td>
<td>3,999527</td>
<td>-7,56E-05</td>
<td>-0,07565</td>
</tr>
<tr>
<td>2,65</td>
<td>3,999327</td>
<td>-2,76E-04</td>
<td>-0,27565</td>
</tr>
<tr>
<td>4,68</td>
<td>3,999227</td>
<td>-3,76E-04</td>
<td>-0,37565</td>
</tr>
</tbody>
</table>
UTJECAJ MJERNE SILE NA REZULTATE MJERENJA VANJSKIH I UNUTARNJIH PROMJERA

Slika 61 - Graf kretanja deformacija na valjčiću promjera 2,05 mm

Vrijednost promjera valjčića 2,05 mm za $F = 0$ N:

$$D = 2,04948 \text{ mm}$$

Tablica 12 - Srednje vrijednosti deformacija valjčića promjera 2,05 mm

<table>
<thead>
<tr>
<th>F, N</th>
<th>Srednja vrijednost promjera valjčića</th>
<th>A_2, mm</th>
<th>A_2, µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25</td>
<td>2,049387</td>
<td>-9,31E-05</td>
<td>-0,09308</td>
</tr>
<tr>
<td>2,65</td>
<td>2,049293</td>
<td>-1,86E-04</td>
<td>-0,18642</td>
</tr>
<tr>
<td>4,68</td>
<td>2,04914</td>
<td>-3,40E-04</td>
<td>-0,33975</td>
</tr>
</tbody>
</table>
Ugledan utjecaj mjernih sila na rezultate mjerenja vanjskih i unutarnjih promjera.

Slika 62 - Graf kretanja deformacija na valjčiću 1,1 mm

Vrijednost promjera valjčića 1,1 mm za $F = 0$ N:

$$D = 1,099532 \text{ mm}$$

Tablica 13 - Srednje vrijednosti deformacija valjčića promjera 1,1 mm

<table>
<thead>
<tr>
<th>F, N</th>
<th>Srednja vrijednost promjera valjčića</th>
<th>A_2, mm</th>
<th>A_2, µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25</td>
<td>1,099313</td>
<td>-2,19E-04</td>
<td>-0,21858</td>
</tr>
<tr>
<td>2,65</td>
<td>1,099027</td>
<td>-5,05E-04</td>
<td>-0,50524</td>
</tr>
<tr>
<td>4,68</td>
<td>1,09868</td>
<td>-8,52E-04</td>
<td>-0,85191</td>
</tr>
</tbody>
</table>

5. Usporedba rezultata
Nakon provedbe svih simulacija, eksperimentalnih mjerenja, i analitičkih proračuna se izrađuje usporedna tablica sa svim dobivenim podacima. U tablici 14 se nalaze svi dobiveni podaci.

Tablica 14 - Usporedba dobivenih rezultata

<table>
<thead>
<tr>
<th>Promjer valjčića</th>
<th>Eksperimentalno, mm</th>
<th>Numeričko rješenje (Abaqus), mm</th>
<th>Analitički, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 = 1,25 N</td>
<td>-7,56E-05</td>
<td>6,17E-04</td>
<td>4,12E-04</td>
</tr>
<tr>
<td>F2 = 2,65 N</td>
<td>-2,76E-04</td>
<td>1,22E-03</td>
<td>6,81E-04</td>
</tr>
<tr>
<td>F3 = 4,68 N</td>
<td>-3,76E-04</td>
<td>2,06E-03</td>
<td>9,95E-04</td>
</tr>
<tr>
<td>2,05 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 = 1,25 N</td>
<td>-9,31E-05</td>
<td>6,09E-04</td>
<td>5,15E-04</td>
</tr>
<tr>
<td>F2 = 2,65 N</td>
<td>-1,86E-04</td>
<td>1,22E-03</td>
<td>8,51E-04</td>
</tr>
<tr>
<td>F3 = 4,68 N</td>
<td>-3,40E-04</td>
<td>2,05E-03</td>
<td>1,24E-03</td>
</tr>
<tr>
<td>1,1 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1 = 1,25 N</td>
<td>-2,19E-04</td>
<td>6,23E-04</td>
<td>6,34E-04</td>
</tr>
<tr>
<td>F2 = 2,65 N</td>
<td>-5,05E-04</td>
<td>1,22E-03</td>
<td>1,05E-03</td>
</tr>
<tr>
<td>F3 = 4,68 N</td>
<td>-8,52E-04</td>
<td>2,05E-03</td>
<td>1,53E-03</td>
</tr>
</tbody>
</table>

Iz tablice 14 je vidljivo dobro slaganje rezultata dobivenih numeričkom i analitičkom metodom analiziranja. Vrijednosti deformacija dobiveni eksperimentalnom metodom razlikuju se za red veličine od numeričkih i analitičkih rezultata.
6. Zaključak

U radu su provedena istraživanja utjecaja mjerne sile na rezultate mjerenja vanjskih i unutarnjih promjera. Za odabrane primjere, mjerenje promjera valjčića, prstena i srednjeg promjera navoja, proveden je analitički proračun očekivanih deformacija na temelju Hertzove teorije elastičnog dodira dvaju tijela. To je model koji je do sada Laboratorij koristio kao mjerodavni prilikom korekcije mjerne sile.

U sljedećem koraku je napravljen računalni model sustava mjerenja promjera valjčića i promjera prstena u programskom paketu Abaqus primjenom numeričke metode konačnih elemenata. Eksperimentalno je utvrđen utjecaj mjerne sile na rezultate mjerenja promjera valjčića. Korišten je jednoosni mjerni uređaj, interferometar i druga mjerna sredstva.

Kao zaključak ovog rada je provedena konačna usporedba svih dobivenih rezultata u 5. poglavlju u kojem se u jednoj tablici uspoređuju rezultati dobiveni svim prethodno navedenim metodama. Usporedba rezultata dobivenih u simulacijskom i analitičkom modelu je pokazala dobro poklapanje vrijednosti, međutim usporedba s vrijednostima rezultata dobivenih u Laboratorijskom mjerenju pokazuje određena odstupanja. Razlog odstupanja je najvjerojatnija razlika u materijalu mjernih kapica i mjernih valjčića. Bilo bi realno za zaklučiti da su mjerne kapice izrađene od kaljenog čelika i površinski otvrđene zbog potrebe da budu otporne na trošenje uslijed konstantnog dodira sa drugim tvrdim predmetima (u ovom slučaju valjčićima), dok su valjčići, dokazano u poglavlju 1.3., izrađeni od drugačije čelične legure. U ovom radu se analitički i simulacijski model vode pretpostavkom da su mjerne kapice i valjčići izrađeni od istog materijala, što je u konačnici dovelo do određenih odstupanja u rezultatima u odnosu na rezultate eksperimentalnim mjerenjima.

Očekuje se da bi slaganje rezultata između eksperimentalnog i analitičkog - računalnog modela bilo bolje kada bi se u obzir uzela činjenica da su kapice i valjčići izrađeni iz različitih materijala.

Ovim radom pokazano je da pri mjerenju mjernih valjčića nije potrebno vršiti korekciju s obzirom da se koriste male mjerne sile od 1,25 N – 4,68 N gdje se deformacija kreće ispod 1 µm što je na razini nesigurnosti [8] mjerenja. Kod mjerenja srednjeg promjera navoja ova korekcija je reda veličine veća (poglavlje 2.1.) i ovakav eksperiment potrebno bi bilo provesti i na ovom primjeru, iako je mjerenje navoja puno zahtjevniji mjerni postupak.
7. Literatura

[8] Mahović, S., Skripta teorija i tehnika mjerenja, Zagreb