ZAVRŠNI RAD

Ivan Mudrinić

Zagreb, 2015.
SVEUČILIŠTE U ZAGREBU
FAKULTET STROJARSTVA I BRODOGRADNJE

ZAVRŠNI RAD

Mentori: Prof. dr. sc. Nedeljko Štefanić, dipl. ing.
Dr. sc. Hrvoje Cajner, dipl. ing.

Student: Ivan Mudrinić

Zagreb, 2015.
Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem se obitelji i Matei na pruženoj podršci i ljubavi tokom cijeloga obrazovanja. Posebno se zahvaljujem mentoru dr. sc. Hrvoju Cajneru i prof. Nedeljku Štefaniću koji su mi svojim savjetima i sugestijama omogućili da uspješno završim ovaj rad. Također bih se zahvalio tvrtki "Ex-Agencija" koja mi je ustupila svoje prostorije za ispitivanje potrebno za ovaj rad te svim njezinim zaposlenicima, a posebno mr. sc. Mariu Mačkoviću, koji su mi svojim savjetima pomogli pri provođenju ispitivanja.

Ivan Mudrinić
ZAVRŠNI ZADATAK

Student: IVAN MUDRINIĆ
Mat. br.: 0035187231

Naslov rada na hrvatskom jeziku: Statističke metode u procjeni minimalne energije paljenja zapaljivih prašina
Naslov rada na engleskom jeziku: Statistical methods for estimation of minimal ignition energy of combustible dusts

Opis zadataka:
Procjena minimalne energije paljenja prašine je izuzetno važan korak ka projektiranju zaštitnih sustava u postrojenjima te sprječavanju mogućih katastrofa koje nastaju prilikom zapaljenja nataložene ili uzvitanje zapaljive prašine. Nakon što se utvrdi minimalna energija paljenja prašine, poduzimaju se koraci zaštite električnih instalacija, odnosno potencijalnih uzročnika paljenja. Minimalna energija paljenja prašine ne može se sa sigurnošću utvrditi, stoga je potrebno provesti ispitivanja koje objedinjavaju i uporabu kompleksnijih statističkih metoda. Na temelju rezultata i analize statističkih metodama, minimalna energija paljenja se procjenjuje uz određeni rizik te će to biti predmet ovoga rada. U završnom radu koristit će se modeli distribucija vjerojatnosti u problemu određivanje minimalne energije paljenja prašina prisutnih u industrijskim postrojenjima na eksperimentalnom postavu s Hartmann-ovom posudom.

U radu je potrebno:
1. Opisati samu ispitnu metodou za procjenu minimalne energije paljenja.
2. Sistemizirati statističke metode koje se pojavljuju u samom procesu utvrđivanja (procjene) minimalne energije paljenja.
3. Primijeniti ispitnu metodou na konkretnim zapaljivim prašinama (posebice ugljena prašina).
4. Napraviti pregled literaturnih izvora rezultata ispitivanja drugih instituta i zavoda te usporediti s vlastitim rezultatima.

Zadatak zadao: Prof. dr. sc. Nedeljko Štefanić

Rok predaje rada:

Predviđeni datumi obrane:

Predsjednik Povjerenstva: Prof. dr. sc. Zoran Kunica
SADRŽAJ

SADRŽAJ .. I
POPIS SLIKA .. III
POPIS TABLICA .. IV
POPIS OZNAKA ... V
SAŽETAK ... VI
1. UVOD .. 1
2. DEFINICIJA SLUČAJNE VARIJABLE .. 2
 2.1. Uvod ... 2
 2.2. Slučajna varijabla ... 2
 2.3. Modeli distribucije vjerojatnosti kontinuirane slučajne varijable ... 3
 2.4. Normalna distribucija vjerojatnosti ... 4
 2.4.1. Jedinična normalna raspodjela .. 5
 2.5. Log-normalna distribucija vjerojatnosti .. 6
 2.6. Testiranje hipoteza ... 8
 2.6.1. Kolmogorov-Smirnov test .. 9
 2.6.2 Anderson-Darling test ... 11
3. ISPITNA METODA ... 13
 3.1. Uvod .. 13
 3.2. Planiranje eksperimenta .. 13
 3.3. Ispitivanje minimalne energije paljenja prema normi ... 14
 3.3.1. Zapaljive prašine .. 14
 3.3.2. Minimalna energija paljenja prašine .. 15
 3.3.3. Hartmann-ova posuda .. 16
 3.4. Ispitivane prašine ... 20
 3.5. Metoda određivanja vrijednosti energija tijekom ispitivanja ... 23
4. REZULTATI ISPITIVANJA .. 25
 4.1. Uvod .. 25
 4.2. Ispitivanje prema normi EN 13821:2002 ... 25
 4.2.1. Ugljena prašina sa lokaliteta Bukinje .. 25
4.2.2. Drvena prašina granulacije 71 µm ... 26
4.2.3. Ispitivanje drvene prašine sa lokaliteta Koromačno 27
4.3. Ispitivanje prema Langlievoj metodi ... 28
 4.3.1. Ispitivanje ugljene prašine ... 29
 4.3.2. Ispitivanje drvene prašine granulacije 71 µm .. 31
 4.3.3. Ispitivanje drvene prašine sa lokaliteta Koromačno 34

5. USPOREDBA REZULTATA .. 38
 5.1. Uvod .. 38
 5.2. Usporedba rezultata dobivenih Langlievom metodom i prema normi 38
 5.3. Usporedba rezultata sa drugim izvorima .. 39

6. ZAKLJUČAK ... 41

7. LITERATURA ... 42
POGIS SLIKA

Slika 4. Prikaz prihvaćanja i odbacivanja nulte hipoteze H₀ [1] 8
Slika 5. Grafički prikaz K-S testa .. 10
Slika 6. Prikaz sustava ... 14
Slika 7. Hartmann-ova posuda .. 16
Slika 8. Unutrašnjost Hartmann-ove posude [12] .. 17
Slika 10. Primjer zapaljenja prašine .. 20
Slika 11. Ugljena prašina sa lokaliteta Bukinje ... 21
Slika 12. Drvena prašina granulacije 71 μm ... 22
Slika 13. Drvena prašina sa lokaliteta Koromačno .. 22
Slika 14. Grafički prikaz rezultata za ugljenu prašinu ... 30
Slika 15. Grafički prikaz energije E₀₅ za ugljenu prašinu ... 31
Slika 16. Grafički prikaz rezultata za drvenu prašinu granulacije 71 μm 33
Slika 17. Grafički prikaz energije E₀₅ za drvenu prašinu granulacije 71 μm 34
Slika 18. Grafički prikaz za drvenu prašinu sa lokaliteta Koromačno 36
Slika 19. Grafički prikaz energije E₀₅ za drvenu prašinu sa lokaliteta Koromačno 37
POPIS TABLICA

Tablica 1. Primjer računanja vjerojatnosti ... 3
Tablica 2. Podjela pogrešaka pri testiranju hipoteza .. 9
Tablica 3. Iznosi kapaciteta kondenzatora ... 19
Tablica 4. Vlažnost ispitnih uzoraka .. 23
Tablica 5. Primjer određivanja energija ... 23
Tablica 6. Ispitivanje ugljene prašine prema normi EN 13821:2002 26
Tablica 7. Ispitivanje drvene prašine granulacije 71 μm prema normi EN 13821:2002 27
Tablica 8. Primjer određivanja energija E_2 i E_I... 27
Tablica 9. Ispitivanje drvene prašine sa lokaliteta Koromačno prema normi 28
Tablica 10. Rezultati ispitivanja ugljene prašine ... 29
Tablica 11. Analiza rezultata za ugljenu prašinu ... 30
Tablica 12. Rezultati ispitivanja drvene prašine granulacije 71 μm 32
Tablica 13. Analiza rezultata za drvenu prašinu granulacije 71 μm 33
Tablica 14. Rezultati ispitivanja drvene prašine sa lokaliteta Koromačno 35
Tablica 15. Analiza rezultata za drvenu prašinu sa lokaliteta Koromačno 36
Tablica 16. Vrijednosti energija za ugljenu prašinu .. 38
Tablica 17. Vrijednosti energija za drvenu prašinu granulacije 71 μm 38
Tablica 18. Vrijednosti energija za drvenu prašinu sa lokaliteta Koromačno 38
POPIS OZNAKA

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Veličina</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δt</td>
<td>s</td>
<td>Vremenski raspon</td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>Napon</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>Kapacitet</td>
</tr>
<tr>
<td>E</td>
<td>J</td>
<td>Energija</td>
</tr>
<tr>
<td>E_S</td>
<td>J</td>
<td>Procijenjena minimalna energija paljenja prema normi</td>
</tr>
<tr>
<td>E_1</td>
<td>J</td>
<td>Najviša energija bez zapaljenja prema normi</td>
</tr>
<tr>
<td>E_2</td>
<td>J</td>
<td>Najniža energija sa zapaljenje prema normi</td>
</tr>
<tr>
<td>E_05</td>
<td>J</td>
<td>Energija sa vjerojatnošću zapaljenja od 5%</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Slučajna varijabla</td>
</tr>
<tr>
<td>f_i</td>
<td></td>
<td>Apsolutna frekvencija slučajne varijable</td>
</tr>
<tr>
<td>p_i</td>
<td></td>
<td>Vjerojatnost pojave slučajne varijable</td>
</tr>
<tr>
<td>F(x_i)</td>
<td></td>
<td>Funkcija distribucije slučajne varijable</td>
</tr>
<tr>
<td>μ_X</td>
<td></td>
<td>Očekivana vrijednost od X</td>
</tr>
<tr>
<td>σ</td>
<td></td>
<td>Standardna devijacija</td>
</tr>
<tr>
<td>σ^2</td>
<td></td>
<td>Varijanca</td>
</tr>
<tr>
<td>α</td>
<td></td>
<td>Očekivanje log-normalne distribucije</td>
</tr>
<tr>
<td>β^2</td>
<td></td>
<td>Varijanca log-normalne distribucije</td>
</tr>
<tr>
<td>H_0</td>
<td></td>
<td>Nulta hipoteza</td>
</tr>
<tr>
<td>H_1</td>
<td></td>
<td>Alternativna hipoteza</td>
</tr>
</tbody>
</table>
SAŽETAK

Tema ovoga rada je bila pomoću statističkih metoda odrediti minimalnu energiju paljenja zapaljivih prašina. U prvome dijelu su opisane statističke metode i modeli distribucije vjerojatnosti koji se javljaju u problemu određivanja minimalne energije zapaljenja, gdje je poseban naglasak stavljen na normalnu i log-normalnu razdiobu te Kolmogorov-Smirnov i Anderson-Darling test. Poglavlje nakon toga sadrži opis ispitne metode koja je korištena za izradu ovoga rada, a uključuje normu po kojoj se izvodi, izgled laboratorija i ispitne postave sa Hartmann-ovom posudom, karakteristike prašina koju su se ispitivale i samu metodu odabira energija i izvođenja ispitivanja. U četvrtom dijelu iznijeti su rezultati ispitivanja te se pristupilo statističkoj analizi dobivenih rezultata i izračunavanju minimalne energije paljenja. U zadnjem poglavljju pokušalo se usporediti dobivene rezultate sa različitim literarnim izvorima drugih instituta i zavoda te obrazložiti moguće neslaganje u vrijednostima minimalne energije paljenja.

Ključne riječi: Minimalna energija paljenja, Modeli distribucije vjerojatnosti, Normalna razdioba, Ugljena prašina, Usporedba rezultata
1. UVOD

U ovome radu bit će iznijeti različiti modeli distribucija vjerojatnosti koji se koriste pri rješavanju problema određivanja minimalne energije paljenja prašina prisutnih u industrijskim postrojenjima na eksperimentalnom postavu s Hartmann-ovom posudom. Detaljno će biti iznijeto i samo planiranje i izvođenje ispitne metode potrebne za ovaj rad, kao i naknadni rezultati i analiza statističkim metodama.

Procjena minimalne energije paljenja prašine je važan korak u projektiranju zaštitnih sustava u industrijskim postrojenjima te sprječavanju mogućih katastrofa izazvanih zapaljenjem nataložene ili uzvitlane prašine. Nakon što se utvrdi minimalna energija paljenja, poduzimaju se različiti koraci u zaštiti potencijalnih uzročnika paljenja. Budući da se minimalna energija paljenja ne može sa sigurnošću utvrditi, potrebno je provesti smisleno ispitivanje koje u sebi sadrži i korištenje kompleksnih statističkih metoda. Na temelju rezultata i analize statističkim metodama, minimalna energija se procjenjuje uz određeni rizik. Za statističku analizu bit će korišten programski paket Statistica 12 Trial.
2. DEFINICIJA SLUČAJNE VARIJABLE

2.1. Uvod

Statistika je posebna znanstvena disciplina koja na temelju određenih postupaka potrebnih za ostvarenje nekih ciljeva interpretira rezultate dobivene njihovom analizom. Osnovno čime se bavi je kombinatorika i vjerojatnost, obrada empirijskih podataka i mjere polažaja i rasipanja. Širu primjenu dobiva tek za vrijeme 2.svjetskog rata, a glavna podjela je na deskriptivnu i inferencijalnu. Kada opažanja o ponašanju neke pojave poprime numeričku vrijednost, tada se vjerojatnost njihovog pojavljivanja može izraziti kroz pojam slučajne varijable.[1]

2.2. Slučajna varijabla

Kao definiciju slučajne varijable moglo bi se reći da je to funkcija koja elementarnim događajima nekog slučajnog pokusa pridružuje realan broj [2]. To se može protumačiti da kada opažanja o ponašanju poprime numeričku vrijednost, vjerojatnost njihovog pojavljivanja se može izraziti kroz slučajnu varijablu. Slučajne varijable se označavaju upotrebom velikih slova, poput slova X, dok se malim slovima označavaju njene moguće vrijednosti. Postoje diskretna i kontinuirana slučajna varijabla.

Diskretna slučajna varijabla se javlja kod prebrojavanja, odnosno kada rezultati pokusa predstavljaju jednu jedinicu. Primjer diskretne slučajne varijable je koliko puta će pasti broj 3 u 10 bacanja standardne igraće kocke.[1]

Kontinuirana slučajna varijabla se javlja kada je pokus takav da slučajna varijabla uključuje mjerenje. Tada se vrijednost mjerenja prikazuje intervalima. Primjer kontinuirane slučajne varijable je mjerenje dnevne temperature koja se mjeri na kontinuumu vrijednosti. [3]

Slučajne varijable se tretiraju kao diskretno ako ima smisla nekom pojedinačnom ishodu odrediti vjerojatnost. U svim ostalim slučajevima tretiramo ih kao kontinuirane.
2.3. Modeli distribucije vjerojatnosti kontinuirane slučajne varijable

Postoje teorijske distribucije, i to su distribucije koje se mogu očekivati u skladu sa teorijskim pretpostavkama ili našim iskustvom. Mogu se pretpostaviti kao neka hipoteza koju treba ispititati, ili u okviru nekog statističkog modela. Postoje dvije vrste teorijskih distribucija, a to su a priori, i a posteriori.

Tablica 1. Primjer računanja vjerojatnosti

<table>
<thead>
<tr>
<th>Rezultat</th>
<th>Apsolutna frekvencija</th>
<th>Vjerojatnost</th>
<th>Funkcija distribucije</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>f_i</td>
<td>p_i</td>
<td>$F(x_i)$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1/36</td>
<td>1/36</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2/36</td>
<td>3/36</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3/36</td>
<td>6/36</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4/36</td>
<td>10/36</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5/36</td>
<td>15/36</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>6/36</td>
<td>21/36</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>5/36</td>
<td>26/36</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>4/36</td>
<td>30/36</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3/36</td>
<td>33/36</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2/36</td>
<td>35/36</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1/36</td>
<td>36/36</td>
</tr>
<tr>
<td>UKUPNO</td>
<td>36</td>
<td>36/36</td>
<td>-</td>
</tr>
</tbody>
</table>
U drugom stupcu navedene su apsolutne frekvencije, a one prikazuju na koliko načina se željeni rezultat može postići. U trećem stupcu nalaze se vjerojatnosti svakog mogućeg ishoda i njihov zbroj mora biti jednak 1. Sve te vjerojatnosti čine distribuciju vjerojatnosti. Kumuliranje, odnosno nagomilavanjem tih vjerojatnosti dobiva se kumulativna distribucija vjerojatnosti, a funkcija kojom možemo odrediti članove toga niza naziva se funkcija distribucije i prikazana je u četvrtom stupcu.

2.4. Normalna distribucija vjerojatnosti

Normalna ili Gaussova distribucija je najraširenija distribucija vjerojatnosti u prirodi. Za njenu distribuciju moraju biti ispunjeni neki uvjeti: [1]

- veliki broj mjerenja
- sva mjerenja ista i u istim uvjetima
- skupina koju mjerimo mora biti ista po svim svojim svojstvima osim po svojstvu koje mjerimo

Slučajna varijabla X ako poprima vrijednosti $X \in \mathbb{R}$ ima normalnu razdiobu. Funkciju gustoće vjerojatnosti se može definirati slijedećim izrazom: [4]

$$f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}, -\infty \leq x \leq +\infty, \sigma > 0$$

Pri definiranju kontinuiranih distribucija vjerojatnosti standardno se koriste dvije očekivane vrijednosti, a to su sredina kontinuirane slučajne varijable X, koja se definira kao očekivana vrijednost od X, a označava se sa μ_x.

$$\mu_x = E(x)$$

Fakultet strojarstva i brodogradnje
Druga vrijednost koja se javlja kod kontinuiranih distribucija vjerojatnosti je varijanca od X, koja se označava σ_x^2 i ona se definira kao očekivanje kvadrata odstupanja slučajne varijable od njezine sredine, odnosno njezinog očekivanja.[4]

$$\sigma_x^2 = E((x - \mu)^2)$$

1.3

Standardnu devijaciju od X, koja se označava σ, može se dobiti kao kvadratni korijen iz varijance. Izgled krivulje u funkciji gustoće vjerojatnosti normalne distribucije je simetričan. Krivulja je zvonasta oblika i njezina os simetrije prolazi kroz točku sredine, odnosno očekivanja μ. Za poznavanje oblika krivulje potrebno je znati aritmetičku sredinu, odnosno očekivanje i standardnu devijaciju ili varijancu. Krivulja zavisi o aritmetičkoj sredini tako da svakom promjenom aritmetičke sredine krivulje se translatorsko pomiče po apsici, dok o standardnoj devijaciji ovisi tako da što je standardna devijacija manja to je krivulja uža i obratno. Primjeri izgleda krivulje funkcije distribucije su prikazani na sljedećoj slici. [4]

Slika 1. Funkcija gustoće vjerojatnosti normalne distribucije[4]

2.4.1. Jedinična normalna raspodjela

Normalna distribucija se svodi na jediničnu tako da se obilježje X linearno transformira u $X = \mu + z\sigma$, pa se umjesto normalne kontinuirane slučajne varijable X dobiva standardizirana varijabla z izgleda: [4]

$$z = \frac{x - \mu}{\sigma}$$

1.4
U takvoj jediničnoj raspodjeli aritmetička sredina je jednaka 0, a standardna devijacija iznosi 1. Svođenje na jediničnu raspodjelu omogućuje korištenje tablica standardizirane distribucije za računanje vjerojatnosti za bilo koju varijablu. Transformaciju normalne distribucije u jediničnu se može pogledati na slici 2.

![Slika 2. Prikaz transformacije iz normalne u jediničnu distribuciju[1]](image)

2.5. Log-normalna distribucija vjerojatnosti

Ova vrsta distribucije vjerojatnosti odlično opisuje slučajeve poput duljine životnog vijeka nekog proizvoda, ili izračunavanju prosjeka plaća zaposlenika. Log-normalna raspodjela opisuje slučaj kada je logaritam varijable \(x[\ln(x)]\) normalno distribuiran.

\[
\ln(x) = y \quad (1.5)
\]

Vjerojatnost pojave varijable \(x\) se dobiva transformacijom varijable \(y\), \(x \in (0, \infty)\). Stoga ako varijabla \(y\) ima normalnu distribuciju sa očekivanjem \(\alpha\) i varijancom \(\beta^2\) tada vrijedi jednakost \(x = e^y\). To predstavlja log-normalnu varijablu sa funkcijom gustoće vjerojatnosti: [1]

\[
f(x) = \left\{ \frac{1}{x\beta\sqrt{2\pi}} \cdot e^{-\frac{(\ln(x) - \mu)^2}{2\beta^2}} \right\} \quad (1.6)
\]
A za sve ostale slučajeve vrijedi da je \(f(x) = 0 \). Izrazi za očekivana vrijednost i varijancu od \(X \) su sljedeći:

\[
E(x) = e^{\alpha + \frac{\beta^2}{2}}
\] (1.7)

\[
V(x) = e^{2\alpha + \beta^2} \ast (e^{\beta^2} - 1)
\] (1.8)

Na slici 3. se može vidjeti izgled krivulje za funkciju gustoće vjerojatnosti za log-normalnu razdiobu, te kako ona ovisi i parametru \(\beta \). [1]

![Slika 3. Funkcija gustoće vjerojatnosti za log-normalnu distribuciju [1]](image-url)
2.6. Testiranje hipoteza

Najveći problem koji se nameće kada u osnovnom skupu imamo jako puno elemenata je što se mora provesti jako puno ispitivanja što iziskuje puno vremena, ali i financijskih izdataka. Također u nekim slučajevima nije ni moguće izvesti sva potrebna mjerenja za uspješnu analizu. Stoga postoje metode gdje se prikupe svi potrebni podaci, a to su većinom mjerenja ili opažanja, za samo jedan dio elemenata unutar osnovnog skupa, i onda na temelju analize tih rezultata se donose odluke za kompletan osnovni skup. [5]

Testiranje hipoteza se može opisati kao postupak unutar statistike, gdje se na temelju prikupljenih podataka određuju nulta H_0 i alternativna H_1 hipoteza, koje uvijek moraju biti proturječne, te se one prihvaćaju ili odbacuju ovisno o prikupljenim podacima. Prilikom samog postupka prihvaćanja ili odbacivanja hipoteza može doći do pogrešaka, koje možemo podijeliti na pogreške I. vrste i II. vrste. Pogreška I. vrste se javlja ako se odbije nulta hipoteza odnosno ako računska vrijednost padne u dio B, iako je nulta hipoteza točna. Pogreška II. vrste se javlja kada računska vrijednost padne u dio A i prihvati se nulta hipoteza iako nije točna. Na slici 4. može se vidjeti prikaz prihvaćanja i odbijanja nulte hipoteze H_0.

Slika 4. Prikaz prihvaćanja i odbacivanja nulte hipoteze H_0 [1]
U tablici 2. je prikazana podjela pogrešaka pri testiranju hipoteza.

Tablica 2. Podjela pogrešaka pri testiranju hipoteza

<table>
<thead>
<tr>
<th>HIPOTEZA H₀</th>
<th>ISTINITA</th>
<th>NEISTINITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>Pogreška 1. vrste α</td>
<td>ISPRAVNO</td>
</tr>
<tr>
<td>ODBACIVANJE</td>
<td>Pogreška 2. vrste β</td>
<td></td>
</tr>
<tr>
<td>PRIHVAĆANJE</td>
<td>ISPRAVNO</td>
<td>Pogreška 2. vrste β</td>
</tr>
</tbody>
</table>

U okviru ovoga rada objasniti će se Kolmogorov-Smirnov test, i Anderson-Darling test.

2.6.1. Kolmogorov-Smirnov test

Kolmogorov-Smirnov test dvaju uzoraka je neparametarski test u kojem se uspoređuje kumulativna raspodjela dviju skupina podataka. Koristi se u slučaju ispitivanja oblika razdiobe osnovnoga skupa iz kojega potječe promatrani uzorak. U načelu postoje dvije vrste ovoga testa:

1. Kolmogorov-Smirnov test prikladnosti uzorka
2. Kolmogorov-Smirnov test dvaju uzoraka

Kolmogorov-Smirnov test prikladnosti uzorka se koristi u slučaju kada se želi utvrditi da li uzorak potječe iz neke populacije koju obilježava određena distribucija. Taj test ima određena ograničenja u vidu toga da vrijedi samo u slučajevima kontinuirane razdiobe, osjetljiv je u blizini centra razdiobe i može se primjenjivati samo kada je razdioba u potpunosti definirana.[6]
Test prikladnosti uzorka je definiran na sljedeći način:

- H_0: podatci slijede određenu raspodjelu
- H_1: podatci ne slijede određenu raspodjelu
- α - stupanj značajnosti
- hipoteza se odbacuje ukoliko je statistika testa D, veća od kritične vrijednosti dobivene iz tablica
- statistika testa je ovako definirana:

\[
D = \max_{1 \leq i \leq N} (F(Y_i) - \frac{i-1}{N}, \frac{i}{N} - F(Y_i))
\]

(1.9)

Na sljedećoj slici je prikazan graf empirijske funkcije distribucije vjerojatnosti. K-S test se bazira na najvećem razmaku između ove dvije linije:

![Grafički prikaz K-S testa](image)

Slika 5. Grafički prikaz K-S testa
Kolmogorov-Smirnov test dvaju uzoraka je neparometarski, odnosno ne pretpostavlja da su podatci preuzeti iz normalne raspodjele, niti bilo koje druge. Taj test se koristi kako bi se utvrdilo da li oba uzorka dolaze iz iste razdiobe. Može se definirati na sljedeći način: [7]

- \(H_0 \): oba uzorka dolaze iz populacije s jednakom razdiobom
- \(H_a \): oba uzorka ne dolaze iz populacije s istom razdiobom
- prvi uzorak je veličine \(m \) i ima funkciju razdiobe \(F(x) \)
- drugi uzorak je veličine \(n \) i ima funkciju razdiobe \(G(x) \)
- statistika testa je ovako definirana:

\[
D_{m,n} = \max_x |F(x) - G(x)|
\]

Nulta pretpostavka \(H_0 \) se odbacuje ukoliko vrijedi:

\[
D_{m,n} > D_{m,n,a}
\]

2.6.2 Anderson-Darling test

Anderson-Darling test se koristi u onim slučajevima kada uzorak potječe iz populacije kojoj se zna koje je distribucije. Ona se nastavlja na Kolmogorov-Smirnov test, koji je neovisan o vrsti distribucije jer njegove kritične vrijednosti ne ovise o specifičnoj distribuciji koja se ispituje, dok kod Anderson-Darling testa baš suprotno, uzima se u obzir specifična distribucija tijekom računanja kritičnih vrijednosti. Kao posljedica toga ovaj test je puno osjetljiviji, stoga kritičnu vrijednost se treba izračunati za svaku distribuciju zasebno.

Test je definiran na sljedeći način: [8]

- \(H_0 \): uzorak prati određenu razdiobu
- \(H_1 \): uzorak ne prati određenu razdiobu
- kritične vrijednosti ovise o specifičnoj razdiobi koja se ispituje
• statistika testa je definirana:

\[A^2 = -N - S \] \hspace{1cm} (1.12)

gdje je:

\[S = \sum_{i=1}^{N} \frac{(2i-1)}{N} \left[\ln F(Y_i) + \ln \left(1 - F(Y_{N+1-i}) \right) \right] \] \hspace{1cm} (1.13)

Anderson-Darling test nam odgovara na pitanje da li podatci slijede određenu razdiobu, a pretpostavka da se podatci ponašaju prema normalnoj razdiobi je najčešća u klasičnim statističkim testovima.

Metodama opisanim u ovom poglavlju analizirat će se ispitni rezultati pri određivanju minimalne energije paljenja.
3. ISPITNA METODA

3.1. Uvod

Eksperimentalni dio ovoga rada, odnosno ispitivanje se odvijalo u prostorijama Ex-Agencije, točnije u njezinom laboratoriju za protueksplozijsku zaštitu pod nadzorom stručnog osoblja. Testiranja koja se odvijaju u ovim prostorijama, moraju biti provedena s velikom pažnjom da ne bi došlo do propusta zbog kojih može doći do opasnih posljedica. Eksperiment se izvodi na postavu s Hartmann-ovom posudom prema normi EN 13821:2002, a svi zahtjevi koji su propisani tom normom bit će opisani kasnije u ovom poglavlju.

3.2. Planiranje eksperimenta

Ispitnu metodu se može definirati kao test ili niz testova u kojima namještanjem ulaznih parametara i promatranjem izlaznih parametara se pokušava pronaći njihovu vezu. Pravilnim planiranjem pokusa i njegovom statističkom obradom značajno se povećava brzina i pouzdanost istraživanja, stoga ova metoda ima široku primjenu u industriji. Ono što ona predviđa je pravilna priprema prije postavljanja eksperimenta, odnosno prikupljanje dovoljno podataka i definiranje bitnih izlaznih parametara koji su zanimljivi za istraživanje, kao i ulaznih faktora s kojima se žele dovesti u vezu. Sve je to naravno potrebno uz minimalne financijske izdatke.[9]

Kada bi se ispitna metoda zamislila kao sustav, ona bi se sastojala od ulaznih varijabli koje mogu biti kontrolirane i nekontrolirane i izlaznih varijabli. Govoreći u terminima statistike, ulazne varijable su nezavisni čimbenici, a izlazne zavisne. Zbog nekontroliranih varijabli dolazi do pogrešaka u mjerenju. Cilj eksperimenta je adekvatnim odabirom ulaznih varijabli dobiti potrebne izlazne varijable, kako bi se ti rezultati mogli obraditi i smatrati točnima, te kako bi se pronašla uzročno-posljedična veza između ulaza i izlaza. [9]
Prikaz sustava se može vidjeti na slici 6.

![Diagram](image)

Slika 6. Prikaz sustava

Iz sustava prikazanog na slici 1. može se zaključiti kako će cilj ispitne metode biti odrediti koliko moraju iznositi ulazne varijable X da bi se izlazna varijabla Y kretala u okviru neke preporučene vrijednosti, ili koliko koja ulazna varijabla utječe na rezultat izlazne varijable.

3.3. Ispitivanje minimalne energija paljenja prema normi

3.3.1. Zapaljive prašine

Eksplozivne smjese sa zrakom ne tvore samo zapaljivi plinove, već se isto tako ponašaju i prašine, poput prašina ugljena, sumpora ili drveta. Uzvitlane i nataložene prašine predstavljaju opasnost jer mogu tvoriti eksplozivnu atmosferu zbog mogućnosti zapaljenja uzrokovano zagrijavanjem površine opreme do temperature tinjanja prašine. Također do zapaljenja može doći zbog lokalnog buktanja, odnosno nataložena prašina se uzvitla i dolazi do niza lančanih reakcija sve dok u atmosferi ima dovoljno kisika za gorenje, stoga se može i zaključiti da će se eksplozije prašine širiti u smjeru dovoda zraka.[10]
Postoje tri skupine zapaljivih prašina: [10]

- vlakanca ili pahuljice, čestice većih dimenzija
- organske prašine
- električki vodljive prašine, ugljene, metalne

Na zapaljivost prašine mogu utjecati veličina zrna prašine, odnosno njena granulacija, gdje smanjenjem veličine zrna opada i energija potrebna za paljenje prašine. Također pri manjim granulacijama dolazi do lakšeg uzvitlavanja i formiranja oblaka, gdje dolazi do utjecaja i drugi faktor, a to je vлага, koja sprječava to. Slojevi nataložene prašine su opasnosti i radi mogućnosti tinjavog paljenja, ali i radi mogućnosti formiranja oblaka prašine.

Primjeri sustava gdje dolazi do taloženja prašine su različiti sustavi transporta, cjevovodi, filtri i slično.

3.3.2. Minimalna energija paljenja prašine

Minimalna energija paljena prašine se ne može egzaktno odrediti, stoga je potrebno provesti smisleno ispitivanje kako bi se na temelju rezultata i njegove analize, statističkim metodama uz određeni rizik procijenila minimalna energija paljena prašine. Određivanje se provodi tako da se prašina rasprši unutar zone inducirane električne iskre koja se dobiva preko visokonaponskog istosmjernog električnog kruga. Ono što se želi utvrditi je da li je neka smjesa prašine i zraka zapaljava usred iskre određene energije. Pokušavaju se simulirati uvjeti što sličniji onima u industrijskim postrojenjima kako bi se dobili što točniji rezultati i kako bi se spriječile moguće katastrofe. Nakon određivanja minimalne energije paljenja pristupa se zaštiti električnih instalacija, odnosno potencijalnim uzročnicima paljenja na mjestima u postrojenju gdje se ta smjesa nalazi. Pri ispitivanju minimalne energije paljenja varira se veličinom energije, zatim korištenjem induktiviteta, masom ispitivane prašine i vremenskim razmakom između raspršenja prašine i uspostavljanja iskre.
3.3.3. Hartmann-ova posuda

Ova ispitna metoda se izvodi pomoću uređaja unutar kojega se nalazi Hartmann-ova posuda. Uređaj je spojen na vanjsko osobno računalo pomoću kojega se upravlja eksperimentima. Također je spojeno na mrežu od 220 V te ima priključak filtriranog zraka koji se nalazi na nekom pritisku. Na slici 7. se može vidjeti izgled Hartmann-ove posude.

Slika 8. Unutrašnjost Hartmann-ove posude [12]
Prije generiranja iskre i pristupanju testu potrebno je odrediti ulazne parametre. Energija iskre ovisi o kapacitetu kondenzatora i veličini napona na kondenzatoru i to prema formuli: [13]

\[E = 0,5 \times C \times U^2 \]

(1.14)

Na slici 9. se može vidjeti program pomoću kojega se određuju ulazni parametri.

![Slika 9. Program za određivanje parametara uređaja [12]](image)

Vidljivo je da u uređaju postoji šest kondenzatora te se kombinacijom njihovog uključivanja i isključivanja i određivanjem veličine napona na kondenzatoru određuje potrebna energija iskre za eksperiment. Pritiskom na tipku L uključuje se induktivitet u seriju preko zavojnice induktiviteta 1 mH. Također može se podešavati vremenski razmak između raspršenja prašine i generiranja iskre od 50 ms do 250 ms. Maksimalan mogući napon iznosi 17 V. Uključivanjem svih kondenzatora u seriju i uz maksimalan iznos napona energija iznosi 1092,4 J, što je ujedno i ograničenje eksperimentalnog postava.
Iznosi kapaciteta kondenzatora dani su u tablici 3.

Tablica 3. Iznosi kapaciteta kondenzatora

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 pF</td>
<td>50 pF</td>
<td>230 pF</td>
<td>660 pF</td>
<td>2,2 nF</td>
<td>4,4 nF</td>
</tr>
</tbody>
</table>

Nakon podešavanja parametara na željene vrijednosti, pritiskom na tipku "PRIPREMI" aktivira se ventil za punjenje Hartmann-ove posude te pritiskom na tipku "FIRE" dolazi do uskolvitavanja prašine i stvaranja električnog izboja.

Uvjeti koje treba zadovoljiti prema normi EN 13821:2002 [13] :

- volumen Hartmann-ove cijevi je 1.2 L
- zrak koji ulazi u posudu mora biti komprimiran na 7 bara
- promjer elektroda mora iznositi 2.0 ± 0.5 mm
- elektroda mora biti šiljasta
- razmak između elektroda mora biti 6 mm
- materijali elektrode: wolfram, bakar, nehrđajući čelik
- temperatura u prostoriji mora biti u rasponu od 20 °C do 25 °C
- apsolutni tlak zraka u prostoriji mora biti između 0.8 bar i 1.1 bar

Nakon svakog ispitivanja važno je detaljno očistiti Hartmann-ovu posudu i njezino postolje, a pogotovo elektrode unutar posude jer je to najosjetlivi dio na kojem svaka nečistoća može dovesti do pogrešnih rezultata. Često se događa da zbog prljavštine koja se nataloži na elektrodama program javlja grešku da iskra nije u redu, ili se električni luk uopće ne uspostavi. Tada treba prekinuti to ispitivanje, sve ponovno očistiti i pristupiti novome ispitivanju, što je u skladu s metodologijom planiranja pokusa za ovakve situacije koja se odnosi na slučajnost izvođenja pokusa sa resetiranjem postavki "Randomize with Reset". U okviru ovoga rada ispitivala se minimalna energija paljenja ugljene i drvenih prašina.
Na slici 10. prikazano je kako izgleda kada dođe do zapaljenja prašine tijekom ispitne metode.

![Slika 10. Primjer zapaljenja prašine](image)

Na slici je također vidljivo kako izgleda cijela postava laboratorija s uređajem s Hartmann-ovom posudom, osobnim računalom s programom za upravljanje ispitnom metodom i priključkom za komprimirani zrak.

3.4. Ispitivane prašine

U ovome ispitivanju tražila se minimalna energija paljenja sljedećih prašina:

- ugljena prašina sa lokaliteta Bukinje granulacije manje od 63 μm
- drvena prašina granulacije 71 μm
- drvena prašina sa lokaliteta Koromačno
Na sljedećim slikama prikazani su ispitni uzorci pojedinih prašina

Slika 11. Ugljena prašina sa lokaliteta Bukinje
Slika 12. Drvena prašina granulacije 71 μm

Slika 13. Drvena prašina sa lokaliteta Koromačno
Ivan Mudrinić

Završni rad

Fakultet strojarstva i brodogradnje

Ispitana je i vlažnost uzoraka koja je dana u tablici 4.

Tablica 4. Vlažnost ispitnih uzoraka

<table>
<thead>
<tr>
<th>Ugljena prašina Bukinje</th>
<th>Drvena prašina 71 μm</th>
<th>Drvena prašina Koromačno</th>
</tr>
</thead>
<tbody>
<tr>
<td>za 1g</td>
<td>za 2g</td>
<td>za 1g</td>
</tr>
<tr>
<td>7%</td>
<td>6,46%</td>
<td>4,75%</td>
</tr>
</tbody>
</table>

3.5. Metoda određivanja vrijednosti energija tijekom ispitivanja

Postoje dvije metode određivanja vrijednosti energija kojima se može služiti tijekom ispitivanja. U okviru ovoga rada korištene su obje metode. Prva metoda je ona koju preporuča europski standard (2002), a druga je takozvana "Langlie" metoda. Europski standard preporuča metodu u kojoj se traži energija E_1, koja je najveći iznos energije na kojem se zapaljenje neće dogoditi u 10 uzastopnih pokušaja, te energija E_2 koja je najmanji iznos energije na kojoj će se zapaljenje dogoditi. U toj metodi također se varira sa masom i vremenskim razmakom između raspršenja prašine i stvaranja iskre. Kada se koristi ova metoda, ona iziskuje puno veći broj ponavljanja nego Langlieva metoda. U tablici 5. se može vidjeti primjer određivanja energija E_1 i E_2. [13]

Tablica 5. Primjer određivanja energija

<table>
<thead>
<tr>
<th>ENERGIJA</th>
<th>Masa ispitne prašine</th>
<th>Vjerojatnost zapaljenja</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>$E_1 = 10,mJ$</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>$E_2 = 30,mJ$</td>
<td>NE</td>
<td>DA</td>
</tr>
</tbody>
</table>
Minimalna energija zapaljenja leži negdje između energija E_1 i E_2. Da se ne bi morao pisati interval u kojem leži minimalna energija paljenja, može se izraziti jedna vrijednost E_S koja je procijenjenja vrijednost minimalne energije paljenja, a izračunava se preko sljedeće formule:

$$E_S = 10^{\log E_2 \frac{DA [E2] \times (\log E_2 - \log E_1)}{NE + DA \times [E2] + 1}} \ (1.15)$$

Langlieva metoda se često koristi u pirotehnici za određivanje osjetljivosti zapaljenja, a povezana je sa statističkim zakonima. Dva važna parametra koja proizlaze iz ovakve metode su srednja vrijednost i standardna devijacija pripadajuće distribucije vjerojatnosti. Pokazat će se da su najčešće to normalna i log-normalna distribucija vjerojatnosti. Postupak korišten u ovom slučaju je takav da se pronađe energija koja sa velikom vjerojatnošću neće uzrokovati zapaljenja. Energija koja se traži će sa vjerojatnošću od 5% uzrokovati inicijalno paljenje.[14]

U prvom koraku ove metode potrebno je odrediti gornju i donju vrijednost energije, pri kojima će se očekivati da na gornjoj vrijednosti sigurno dođe do zapaljenja, a na donjoj da ne dođe do zapaljenja. Prvi iznos energije na kojem ćemo testirati prašinu je srednja vrijednost između donje i gornje vrijednosti. Kasniji tijek ispitivanja određuje se prema sljedećim pravilima: [15]

- ako nije došlo do zapaljenja, iduća vrijednost energije je između srednje i gornje vrijednosti energije, a ako je došlo do zapaljenja iduća vrijednost je između srednje i donje vrijednosti.
- ako je pri prvom ispitivanju došlo do zapaljenja, a pri drugom nije, treća vrijednost energije će biti između te dvije, a ako je i pri prvom i pri drugom pokušaju došlo do zapaljenja, iduća vrijednost energije je između donje granice i vrijednost energije pri drugom ispitivanju, itd.
4. REZULTATI ISPITIVANJA

4.1. Uvod

U ovom poglavlju bit će prikazani dobiveni rezultati ispitivanja i njihova analiza. U prvom dijelu bit će prikazano ispitivanje prema normi EN 13821:2002 sa pripadajućim tablicama, a u drugom dijelu ispitivanje Langlievom metodom sa pripadajućim grafovima i dobivenim rezultatima.

4.2. Ispitivanje prema normi EN 13821:2002

4.2.1. Ugljena prašina sa lokaliteta Bukinje

Kao što se objasnila metoda u podpoglavlju 3.5. traži se najniža energija na kojoj će se dogoditi zapaljenje i najviša energija na kojoj se neće dogoditi zapaljenje u 10 pokušaja. Također se varira sa masom i vremenskim razmakom između stvaranja oblaka prašine i nastajanja iskre. Minimalna energija paljenja se tada nalazi između te dvije energije, a da se ne bi pisao taj raspon kao konačni rezultat, može se izračunati jedna vrijednost kao rezultat a to je E_S koji se izračuna prema formuli (1.15).

Na sljedećoj stranici u tablici 6. su prikazani rezultati mjerenja, a izračunata vrijednost E_S za ugljenu prašinu sa lokaliteta Bukinje iznosi:

$$E_S = 384,97 \text{ mJ}$$

U tablici 6. podebljan je iznos najniže energije kod koje se dogodilo zapaljenje, to je energija E_2, a crvenom bojom je označena najviša energija kod koje se nije dogodilo zapaljenje, i to je energija E_1.
Tablica 6. Ispitivanje ugljene prašine prema normi EN 13821:2002

<table>
<thead>
<tr>
<th>VRSTA PRAŠINE</th>
<th>Energija [mJ]</th>
<th>Napon [V]</th>
<th>Induktivitet</th>
<th>Δt [s]</th>
<th>Zapaljenje</th>
<th>Masa [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGLJENA PRAŠINA BUKINJE</td>
<td>456,6</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>284,2</td>
<td>16,0</td>
<td>DA/NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>368,6</td>
<td>16,0</td>
<td>DA/NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>401,6</td>
<td>16,7</td>
<td>DA/NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>423,4</td>
<td>17,0</td>
<td>DA/NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>456,6</td>
<td>17,0</td>
<td>NE</td>
<td>100</td>
<td>DA</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>456,6</td>
<td>17,0</td>
<td>DA/NE</td>
<td>100</td>
<td>NE</td>
<td>2,5</td>
</tr>
<tr>
<td></td>
<td>456,6</td>
<td>17,0</td>
<td>NE</td>
<td>100</td>
<td>NE</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>423,4</td>
<td>17,0</td>
<td>NE</td>
<td>100</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>401,6</td>
<td>16,7</td>
<td>DA/NE</td>
<td>100</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>423,4</td>
<td>17,0</td>
<td>DA/NE</td>
<td>100</td>
<td>NE</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>401,6</td>
<td>16,7</td>
<td>DA/NE</td>
<td>100</td>
<td>NE</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>401,6</td>
<td>16,7</td>
<td>DA/NE</td>
<td>100</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>361,3</td>
<td>17,0</td>
<td>DA/NE</td>
<td>50-100</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>361,3</td>
<td>17,0</td>
<td>DA/NE</td>
<td>150-200-250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>401,6</td>
<td>16,7</td>
<td>NE</td>
<td>100</td>
<td>DA</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>401,6</td>
<td>16,7</td>
<td>DA/NE</td>
<td>50-250</td>
<td>NE</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>361,3</td>
<td>17,0</td>
<td>DA/NE</td>
<td>50-250</td>
<td>NE</td>
<td>1,5</td>
</tr>
</tbody>
</table>

4.2.2. Drvena prašina granulacije 71 μm

Istu tehniku smo primjenili i pri ispitivanju drvenih prašina stoga ćemo za njih iznijeti samo izračunate energije E_S i pripadajuće tablice ispitivanja. Iznos energije E_S dobiven mjerenjem ove prašine, čiji su rezultati prikazani u tablici 7. na sljedećoj stranici iznosi:

$$E_S = 488,94 \text{ mJ}$$
Tablica 7. Ispitivanje drvene prašine granulacije 71 μm prema normi EN 13821:2002

<table>
<thead>
<tr>
<th>VRSTA PRAŠINE</th>
<th>Energija [mJ]</th>
<th>Napon [V]</th>
<th>Induktivitet</th>
<th>Δt [s]</th>
<th>Zapaljenje</th>
<th>Masa [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRVENA PRAŠINA 71μm</td>
<td>774,5</td>
<td>17,0</td>
<td>NE</td>
<td>100</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>908,1</td>
<td>15,5</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>847,4</td>
<td>16,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>822,9</td>
<td>15,5</td>
<td>DA/NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>822,9</td>
<td>15,5</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>805,5</td>
<td>15,6</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>774,5</td>
<td>17,0</td>
<td>DA/NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>774,5</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>734,1</td>
<td>17,0</td>
<td>DA/NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>734,1</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>708,4</td>
<td>16,7</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>650,2</td>
<td>16,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>601,7</td>
<td>16,5</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>531,0</td>
<td>15,5</td>
<td>DA</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>497,3</td>
<td>15,0</td>
<td>DA/NE</td>
<td>50-250</td>
<td>NE</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>531,0</td>
<td>15,5</td>
<td>DA/NE</td>
<td>50-250</td>
<td>NE</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>531,0</td>
<td>15,5</td>
<td>DA</td>
<td>150</td>
<td>DA</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>531,0</td>
<td>15,5</td>
<td>DA/NE</td>
<td>150</td>
<td>NE</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>497,3</td>
<td>15,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>464,7</td>
<td>14,5</td>
<td>DA/NE</td>
<td>50-250</td>
<td>NE</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>497,3</td>
<td>15,0</td>
<td>DA/NE</td>
<td>50-250</td>
<td>NE</td>
<td>2,0</td>
</tr>
</tbody>
</table>

4.2.3. Ispitivanje drvene prašine sa lokaliteta Koromačno

U tablici 9. su prikazani rezultati dobiveni ispitivanjem ove prašine, a u tablici 8. je dan primjer određivanja energija E_2 i E_1.

Tablica 8. Primjer određivanja energija E_2 i E_1

<table>
<thead>
<tr>
<th>ENERGIJA</th>
<th>MASA PRAŠINE</th>
<th>1,5 g</th>
<th>2 g</th>
<th>2,5 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_2 = 691,5 mJ</td>
<td>NE</td>
<td>DA</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>E_1 = 645,9 mJ</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ivan Mudrinić

Završni rad

Tablica 9. Ispitivanje drvene prašine sa lokaliteta Koromačno prema normi

<table>
<thead>
<tr>
<th>VRSTA PRAHA</th>
<th>Energija [mJ]</th>
<th>Napon [V]</th>
<th>Induktivitet</th>
<th>Δt [s]</th>
<th>Zapaljenje</th>
<th>Masa [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRVENA PRAŠINA KOROMAČNO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1092,4</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>774,5</td>
<td>17,0</td>
<td>DA/NE</td>
<td>50-250</td>
<td>NE</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>880,5</td>
<td>15,5</td>
<td>NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>923,1</td>
<td>16,7</td>
<td>NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>963,8</td>
<td>17,0</td>
<td>DA/NE</td>
<td>250</td>
<td>NE</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>963,8</td>
<td>17,0</td>
<td>DA/NE</td>
<td>50-150</td>
<td>NE</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>1092,4</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>963,8</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>NE</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>1092,4</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>963,8</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>894,3</td>
<td>17,0</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>795,2</td>
<td>15,5</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>691,5</td>
<td>16,5</td>
<td>NE</td>
<td>250</td>
<td>DA</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>601,7</td>
<td>16,5</td>
<td>NE</td>
<td>50-250</td>
<td>NE</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>645,9</td>
<td>17,0</td>
<td>NE</td>
<td>50-250</td>
<td>NE</td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>691,5</td>
<td>16,5</td>
<td>NE</td>
<td>50-250</td>
<td>NE</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>691,5</td>
<td>16,5</td>
<td>NE</td>
<td>50-250</td>
<td>NE</td>
<td>1,5</td>
<td></td>
</tr>
</tbody>
</table>

Iz dobivenih rezultata izračunata je energija E_S koja iznosi:

$$E_S = 679,81 \text{ mJ}$$

4.3. Ispitivanje prema Langlievoj metodi

Ova metoda je također opisana u podpoglavlju 3.5. Pri statističkoj analizi ovih rezultata korišten je programski paket Statistica 12 Trial te će ovdje biti prikazani grafovi i rezultati koje je program izračunao i pripadajuće tablice ispitivanja.
4.3.1. Ispitivanje ugljene prašine

U tablici 10. dani su rezultati provedenih ispitivanja prema Langlievoj metodi. Plavom bojom je označena najviša energija na kojoj se nije dogodilo zapaljenje, a crvenom bojom najniža energija na kojoj se dogodilo zapaljenje.

Tablica 10. Rezultati ispitivanja ugljene prašine

<table>
<thead>
<tr>
<th>REDNI BROJ</th>
<th>ENERGIJA [mJ]</th>
<th>MASA [g]</th>
<th>Δt [ms]</th>
<th>ZAPALJENJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>301,4</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>2</td>
<td>401,6</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>3</td>
<td>350,7</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>4</td>
<td>376,8</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>5</td>
<td>363,6</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>6</td>
<td>356,8</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>7</td>
<td>360,4</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>8</td>
<td>363,6</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>9</td>
<td>370,2</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>10</td>
<td>376,8</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>11</td>
<td>388,9</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>12</td>
<td>401,6</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>13</td>
<td>450,2</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>14</td>
<td>425,8</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>15</td>
<td>413,3</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
<tr>
<td>16</td>
<td>419,7</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>17</td>
<td>413,3</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>18</td>
<td>401,6</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>19</td>
<td>386,8</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>20</td>
<td>370,2</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>21</td>
<td>363,6</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>22</td>
<td>358,7</td>
<td>1,0</td>
<td>100</td>
<td>DA</td>
</tr>
<tr>
<td>23</td>
<td>350,7</td>
<td>1,0</td>
<td>100</td>
<td>NE</td>
</tr>
</tbody>
</table>

Vidljivo je da je u retku 15 najviša energija na kojoj se nije dogodilo zapaljenje i ona iznosi 413,3 mJ, u retku 22 se nalazi najniža energija na kojoj se dogodilo zapaljenje, stoga su vrijednosti energija između ove dvije izabrane za analizu rezultata i prilagodbu teorijskih distribucija.
Slika 14. Grafički prikaz rezultata za ugljenu prašinu

<table>
<thead>
<tr>
<th>Broj ponavljanja</th>
<th>Očekivanje μ</th>
<th>Standardna devijacija σ</th>
<th>Varijanca σ²</th>
<th>E₀₅[mJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>381,78</td>
<td>19,86</td>
<td>394,38</td>
<td>349,11</td>
</tr>
</tbody>
</table>

U tablici 11. prikazane su vrijednosti izračunate iz rezultata ispitivanja i izračunata je prema normalnoj razdiobi vrijednost energije na kojoj je 5% vjerojatnosti da će doći do zapaljenja i ona iznosi:

\[E_{05} = 349,11 \text{ mJ} \]
Na slici 15. vidljivo je kako je izračunata energija E_{05} i gdje se na grafu nalazi:

Slika 15. Grafički prikaz energije E_{05} za ugljenu pršinu

4.3.2. Ispitivanje drvene prašine granulacije 71 μm

Isti postupak koji je proveden kod ugljene pršine, proveden je i ovdje uz promijenjenu masu i vremenski razmak između stvaranja oblaka i nastajanja iskre. Rezultati ispitivanja prikazani su u tablici 12.
Tablica 12. Rezultati ispitivanja drvene prašine granulacije 71 µm

<table>
<thead>
<tr>
<th>REDNI BROJ</th>
<th>ENERGIJA [mJ]</th>
<th>MASA [g]</th>
<th>Δt [ms]</th>
<th>ZAPALJENJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>543,6</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>2</td>
<td>408,8</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>3</td>
<td>483,4</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>4</td>
<td>516,3</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>5</td>
<td>501,2</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>6</td>
<td>508,7</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>7</td>
<td>490,3</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>8</td>
<td>475,6</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>9</td>
<td>430,8</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>10</td>
<td>453,7</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>11</td>
<td>464,2</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>12</td>
<td>459,9</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>13</td>
<td>455,8</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>14</td>
<td>469,4</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>15</td>
<td>461,2</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>16</td>
<td>450,8</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>17</td>
<td>455,8</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>18</td>
<td>464,2</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>19</td>
<td>486,5</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>20</td>
<td>471,2</td>
<td>1,5</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>21</td>
<td>450,8</td>
<td>1,5</td>
<td>250</td>
<td>NE</td>
</tr>
</tbody>
</table>

Vrijednosti energija između onih označenih plavom i crvenom bojom ponovno su izabrani za analizu rezultata i prilagodbu teorijskih distribucija. Programski paket je ponovno proveo Kolmogorov-Smirnov test normalnosti koji je ovdje također potvrdio da se ovi podatci pokoravaju normalnoj distribuciji. Na slici 16. vidljiv je grafički prikaz rezultata ispitivanja ove drvene prašine.
Slika 16. Grafički prikaz rezultata za drvenu prašinu granulacije 71 μm

Opet će se provesti analiza rezultata u kojoj će se odrediti minimalna energija paljenja prema normalnoj razdiobi vrijednosti energija. Analiza je prikazana u tablici 13.

Tablica 13. Analiza rezultata za drvenu prašinu granulacije 71 μm

<table>
<thead>
<tr>
<th>Broj ponavljanja</th>
<th>Očekivanje μ</th>
<th>Standardna devijacija σ</th>
<th>Varijanca σ²</th>
<th>E_{05} [mJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>471,39</td>
<td>10,88</td>
<td>118,36</td>
<td>453,49</td>
</tr>
</tbody>
</table>

Računajući preko dobivenih vrijednosti očekivanja i standardne devijacije uz pomoć statističkih tablica izračunata je vrijednost minimalne energije paljenja koja iznosi:

$$E_{05} = 453,49 \text{ mJ}$$
Na slici 17. vidljivo je kako je izračunata i gdje se na grafu nalazi energija E_{05}.

Slika 17. Grafički prikaz energije E_{05} za drvenu prašinu granulacije 71 μm

4.3.3. Ispitivanje drvene prašine sa lokaliteta Koromačno

To je zadnja ispitivana prašina za koju se ponovno provodi isti postupak kao i za prethodne dvije te su rezultati ispitivanja dani u tablici 14.
Tablica 14. Rezultati ispitivanja drvene prašine sa lokaliteta Koromačno

<table>
<thead>
<tr>
<th>REDNI BROJ</th>
<th>ENERGIJA [mJ]</th>
<th>MASA [g]</th>
<th>Δt [ms]</th>
<th>ZAPALJENJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>603,4</td>
<td>2,0</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>2</td>
<td>753,8</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>3</td>
<td>675,3</td>
<td>2,0</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>4</td>
<td>718,5</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>5</td>
<td>698,4</td>
<td>2,0</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>6</td>
<td>710,1</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>7</td>
<td>705,4</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>8</td>
<td>690,3</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>9</td>
<td>681,7</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>10</td>
<td>641,8</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>11</td>
<td>622,4</td>
<td>2,0</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>12</td>
<td>632,2</td>
<td>2,0</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>13</td>
<td>657,3</td>
<td>2,0</td>
<td>250</td>
<td>NE</td>
</tr>
<tr>
<td>14</td>
<td>681,7</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>15</td>
<td>669,6</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>16</td>
<td>663,9</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>17</td>
<td>650,7</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>18</td>
<td>645,1</td>
<td>2,0</td>
<td>250</td>
<td>DA</td>
</tr>
<tr>
<td>19</td>
<td>628,5</td>
<td>2,0</td>
<td>250</td>
<td>NE</td>
</tr>
</tbody>
</table>

Slika 18. Grafički prikaz za drvenu prašinu sa lokaliteta Koromačno

Prema Kolmogorov-Smirnov testu podatci za ovu prašinu se također pokoravaju normalnoj razdiobi, stoga su u skladu s tim i analizirani rezultati prikazani u tablici 15.

Tablica 15. Analiza rezultata za drvenu prašinu sa lokaliteta Koromačno

<table>
<thead>
<tr>
<th>Broj ponavljanja</th>
<th>Očekivanje μ</th>
<th>Standardna devijacija σ</th>
<th>Varijanca σ^2</th>
<th>E_{05} [mJ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>665,6</td>
<td>18,35</td>
<td>336,59</td>
<td>635,32</td>
</tr>
</tbody>
</table>

Računajući preko programskog paketa kao što je prikazano na slici 19. izračunata je minimalna energija paljenja koja iznosi:

$$E_{05} = 635,32 \text{ mJ}$$
Slika 19. Grafički prikaz energije E_{05} za drvenu prašinu sa lokaliteta Koromačno

Dobiveni rezultati će se u sljedećem poglavlju usporediti. Usporedba će biti međusobna između rezultata dobivenih Langlievom metodom i metodom prema normi, ali i sa drugim autorima.
5. USPOREDBA REZULTATA

5.1. Uvod

U ovom poglavlju će se dati pregled drugih rezultata ispitivanja istih ili sličnih prašina te usporedba dobivenih rezultata s drugim izvorima. Također će se izvesti usporedba rezultata dobivenih ispitivanjem prema normi i prema Langlievoj metodi te razlozi mogućih odstupanja u izračunatim minimalnim energijama zapaljenja.

5.2. Usporedba rezultata dobivenih Langlievom metodom i prema normi

Kako je i objašnjeno u radu su se radila ispitivanja na istim prašinama pomoću dvije metode. Dobiveni rezultati prikazani su uspoređeno u sljedećim tablicama:

<table>
<thead>
<tr>
<th>Tablica 16. Vrijednosti energija za ugljenu prašinu</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANGLIEVA METODA</td>
</tr>
<tr>
<td>Očekivanje μ</td>
</tr>
<tr>
<td>381,78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tablica 17. Vrijednosti energija za drvenu prašinu granulacije 71 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANGLIEVA METODA</td>
</tr>
<tr>
<td>Očekivanje μ</td>
</tr>
<tr>
<td>471,39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tablica 18. Vrijednosti energija za drvenu prašinu sa lokaliteta Koromačno</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANGLIEVA METODA</td>
</tr>
<tr>
<td>Očekivanje μ</td>
</tr>
<tr>
<td>665,6</td>
</tr>
</tbody>
</table>
Prema dobivenim rezultatima vidi se da su dobiveni slični rezultati sa jednom i drugom metodom što samo još više potvrđuje da je izračunata minimalna energija paljenja točna. Na primjeru iz tablice 16. može se vidjeti da su očekivanje dobiveno Langlievom metodom i E_S izračunat prema normi, kojeg bi također mogli smatrati očekivanjem između energija E_1 i E_2, slični. Također vidimo da je minimalna energija paljenja E_{05} dobivena Langlievom metodom malo manja od energije E_1, koja je dobivena tako da se u 10 mjerenja nijednom nije zapalila prašina. Gledamo li statistički da vjerojatnost od 5% znači da bi se u teoriji u 20 mjerenja jednom trebalo dogoditi zapaljenje, a mi smo prema normi proveli samo 10, ovi rezultati se čine sasvim prihvatljivima. Rezultati dobiveni ispitivanjem ostalih prašina također se jednako ponašaju te razlike između rezultata dobivenih različitim metodama se kreću oko 2-3%.

5.3. Usporedba rezultata sa drugim izvorima

Ugljena prašina je također prije bila ispitivana od strane drugog autora [16]. On je svojim ispitivanjem dobio sljedeće rezultate:

Tablica 19. Rezultati energije drugog autora [16]

<table>
<thead>
<tr>
<th>Lignit – Krekanski sjeverni sinklinorij</th>
<th>Energija (mJ)</th>
<th>E_2 (mJ)</th>
<th>E_1 (mJ)</th>
<th>E_s (mJ)</th>
<th>E_{\min} (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudnik „Bukinje“ I krovni sloj</td>
<td>Ugalj bez primjesa</td>
<td>Nesušen</td>
<td>59.2</td>
<td>40.2</td>
<td>11.96</td>
</tr>
<tr>
<td></td>
<td>Sušen</td>
<td>48.2</td>
<td>38.6</td>
<td>10.95</td>
<td>8.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energija (mJ)</th>
<th>Broj pokušaja pri optimalnoj koncentraciji</th>
<th>Vjeroatnoća upale</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_2 = 12,50$</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>$E_1 = 8,00$</td>
<td>NI</td>
<td>NI</td>
</tr>
<tr>
<td>$E_s = 11,44$ mJ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

U startu je vidljivo da ovaj autor ima puno niži raspon energije unutar kojega bi mu se trebala nalaziti minimalna energija paljenja. Autor je radio mjerenja prema normi EN 13821:2002 ali uz malo drugačiju tehniku, gdje se nisu mijenjale mase i tražilo pri kojoj masi će biti
minimalna energija paljenja kao što norma određuje, već je na istoj energiji provedeno 10
pokušaja zapaljenja te je onda na temelju dobivene vjerojatnosti zapaljenja određivan E_s,
stoga se taj rezultat teško može uspoređivati. Jedan od mogućih razloga razlike u energijama
E_1 i E_2 je što nam u radu [16] nije poznata vlažnost samoga uzorka, koja je u ovome radu
ispitana, stoga ne možemo usporediti koliko su uzorci slični po tom svojstvu. Također ono što
je moglo dovesti do razlike u podacima su uvjeti koji su vladali prilikom ispitivanja autora
[16] i ispitivanja obuhvaćenih ovim radom. Vlažnost zraka i temperatura u prostoriji mogu
jako utjecati na rezultate ispitivanja. Također tu su kao razlozi mogući nečistoća same ispitne
prašine, kao i nečistoća na elektrodama koja se nakupi tijekom ispitivanja.

Za drvene prašine se ne može napraviti konkretna usporedba jer nije poznata konkretna vrsta
drvene prašine koja je ispitivana, a i različiti instituti i zavodi ne objavljuju javno svoje radove
istraživanja minimalne energije zapaljenja, ali se može dati u literaturi okvirni raspon energije
u kojem bi se trebala nalaziti minimalna energija paljenja. Prema autoru [17] ta energija bi se
trebala kretati oko 250 mJ, sa granulacijom prašine manjom od 100 μm i vlažnosti uzorka
manjom od 5%. Navedene kriterije zadovoljavaju prašine u ovom radu, ali razine minimalnih
energija paljenja su mnogo veće. Vidljivo je da sa porastom granulacije zrna raste i
minimalna energija paljenja, jer prašina sa lokaliteta Koromačno ima veću granulaciju od 71
μm, stoga je i njen minimalna energija paljenja veća, ali razlog ovolike razlike u energijama
u usporedbi sa autorom [17] vjerojatno leži u sastavu prašine, koja možebito ima mnogo
nečistoće. Također već spomenuti uvjeti koji vladaju tijekom ispitivanja, a to su vlažnost
zraka i temperatura prostorije, mogu mnogo utjecati na rezultate ispitivanja. Ono što se treba
uzeti u obzir je da svaki institut, zavod, ali i poduzeće imaju svoju internu sigurnost koju
uračunaju na dobivene rezultate, a koja moguće nije navedena te tu dolazi do razlika.
6. ZAKLJUČAK

U ovome radu dan je detaljan opis ispitne metode pomoću koje se pokušalo uz pomoć statističkih metoda odrediti minimalna energija paljenja ugljene i drvene prašine na laboratorijskoj postavi sa Hartmann-ovom posudom i prema normi EN 13821:2002 te statističkih metoda i teorijskih modela distribucije vjerojatnosti s posebnim naglaskom na normalnu i log-normalnu razdiobu, kao i Kolmogorov-Smirnov i Anderson-Darling test prikladnosti uzorka.

Određivanje minimalne energije važno je pri projektiranju industrijskih postrojenja jer se pokušavaju eliminirati potencijalni uzročnici zapaljenja koje može prerasti u katastrofu. Minimalna energija se ne može egzaktno odrediti, stoga je potrebno poslužiti se kompliciranijim statističkim metodama kako bi se ona odredila. Energija E_{05} koja se tom metodom određuje daje vrijednost na kojoj je vjerojatnost zapaljenja 5%.

Ispitivanja su provedena u laboratoriju za protueksplozijsku zaštitu "Ex-Agencije" na postavu sa Hartmann-ovom posudom. Norma EN 13821:2002 propisuje uvjete koji moraju vladati tijekom ispitivanja, kao i samu metodu ispitivanja, odnosno ispitnih vrijednosti energija. U radu je korištena ta metoda, kao i Langlieva metoda te je na kraju iznijeta usporedba dobivenih rezultata.

Usporedbom dobivenih rezultata Langlievom metodom, i metodom po normi vidljivo je kako su vrijednosti slične i ne odudaraju jako te to potvrđuje kako su ispitivanja pravilno provedena i kako je rezultat točan. Usporedbom rezultata dobivenih u ovome radu i rezultata drugih autora koji su iznijeti u podpoglavlju 5.3. vidljivo je da rezultati odudaraju te se razlozi toga trebaju tražiti u uvjetima koji su vladali za vrijeme ispitivanja poput vlažnosti i temperature zraka, i karakteristici prašine pod kojom se podrazumijeva njezina vlažnost, granulacija i nečistoće.
7. LITERATURA

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm (15.02.2015.)

[13] BS norma, Determination of minimum ignition energy of dust/air mixtures, EN 13821:2002

