DIPLOMSKI RAD

Antun Balaton

Zagreb, 2016
Izjavljujem da sam ovaj rad izradio samostalno koristeći stečena znanja tijekom studija i navedenu literaturu.

Zahvaljujem mojoj mentorici prof.dr.sc. Veri Rede na pomoći i stalnoj dostupnosti prilikom izrade ovog rada.

Zahvaljujem mojoj obitelji koja me je strpljivo pratila i podržavala tijekom studija.

Antun Balaton
SADRŽAJ

<table>
<thead>
<tr>
<th>SADRŽAJ</th>
<th>STRANIZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>POPIS SLIKA</td>
<td>III</td>
</tr>
<tr>
<td>POPIS TABLICA</td>
<td>V</td>
</tr>
<tr>
<td>POPIS OZNAKA</td>
<td>VI</td>
</tr>
<tr>
<td>SAŽETAK</td>
<td>1</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>1. Uvod</td>
<td>3</td>
</tr>
<tr>
<td>2. Struktura i svojstva drva</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Kemijski sastav i struktura materijala</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Fizikalna i kemijska svojstva drva</td>
<td>7</td>
</tr>
<tr>
<td>3. Mehanička svojstva drva</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Modul elastičnosti</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Vlačna čvrstoća</td>
<td>13</td>
</tr>
<tr>
<td>3.3 Tlačna čvrstoća</td>
<td>15</td>
</tr>
<tr>
<td>3.4 Čvrstoća na savijanje</td>
<td>17</td>
</tr>
<tr>
<td>3.5 Smična čvrstoća</td>
<td>18</td>
</tr>
<tr>
<td>3.6 Čvrstoća na cijepanje</td>
<td>19</td>
</tr>
<tr>
<td>3.7 Čvrstoća na udarac</td>
<td>20</td>
</tr>
<tr>
<td>3.8 Čvrstoća na udarac</td>
<td>21</td>
</tr>
<tr>
<td>3.9 Otpornost protiv habanja</td>
<td>23</td>
</tr>
<tr>
<td>3.9.1 Otpornost protiv habanja</td>
<td>23</td>
</tr>
<tr>
<td>4. Čimbenici mehaničkih svojstava</td>
<td>24</td>
</tr>
<tr>
<td>4.1 Weibullova razdioba mehaničkih svojstava heterogenih materijala</td>
<td>25</td>
</tr>
<tr>
<td>5. Poljski brijest i njegova fosilizacija</td>
<td>27</td>
</tr>
<tr>
<td>5.1 Fizikalna i mehanička svojstva brijesta i primjena</td>
<td>28</td>
</tr>
<tr>
<td>6. Materijal za ispitivanje</td>
<td>32</td>
</tr>
<tr>
<td>7. Istraživačke metode</td>
<td>33</td>
</tr>
<tr>
<td>7.1 Određivanje starosti</td>
<td>33</td>
</tr>
<tr>
<td>7.2 Analiza mikrostrukture</td>
<td>35</td>
</tr>
<tr>
<td>7.3. Ispitivanje savojne čvrstoće i savojnog modula elastičnosti</td>
<td>38</td>
</tr>
<tr>
<td>7.3.1 Ispitivanje prve serije uzoraka okomito na godove - LR</td>
<td>41</td>
</tr>
<tr>
<td>7.3.2 Ispitivanje druge serije uzoraka paralelno s godovima - LT</td>
<td>45</td>
</tr>
<tr>
<td>7.3.3 Ispitivanje treće serije uzoraka pod kutom od 45° u odnosu na tijek godova – L45°</td>
<td>49</td>
</tr>
</tbody>
</table>
7.4 Određivanje gustoće i udjela vlage u drvu pri ispitivanju .. 51
8. Analiza rezultata .. 52
 8.1 Statistička analiza dobivenih rezultata .. 54
10. Zaključak ... 62
11. Popis Literature ... 63
POPIS SLIKA

Slika 5. Prikaz drvene konstrukcije u atmosferskim uvjetima [3]8
Slika 6. Modul elastičnosti za drvo i za druge skupine tehničkih materijala [CES] ..10
Slika 7. Ispitivanje savojnog modula elastičnosti u jednoj točki (a), ispitivanje u dvije točke (b), i ispitni uzorci za određivanje modula elastičnosti (c) [5]11
Slika 17. Prikaz uređaja za određivanje žilavosti [2]21
Slika 21. Utjecaj parametra m na širinu krivulje ..25
Slika 22. Poljski brijest ..27
Slika 23. Građa tkiva stabla listače ..28
Slika 24. Prikaz subfosilnog i recentnog drva[] ...30
Slika 25.a) lokacija pronalaska subfosilnog brijesta, b) prikaz riječnog tok i nalazišta u njemu ...32
Slika 26. Dijagram starost ...34
Slika 27. Prikaz noža za rezanje drvnih uzoraka ...35
Slika 28. Prikaz površine uzorka prije rezanja i mikroskopiranja36
Slika 29. Tangencijalni presjek u mjerilu 1mm ..36
Slika 30. Radijalni presjek u mjerilu 1mm ..37
Slika 31. Poprečni presjek u mjerilu 1mm...37
Slika 32. Kidalica u laboratoriju za eksperimentalnu mehaniku38
Slika 33. Prikaz uzoraka subfosilnog brijsta prije ispitivanja39
Slika 34. Prikaz uzoraka na kidalici ...39
Slika 35. Prikaz uzoraka nakon ispitivanja...40
Slika 36. Položaji rezanja uzoraka ...40
Slika 37. Načini djelovanja sile s obzirom na smjer godova41
Slika 39. Prikaz presjeka rezanja i prostorne pozicije41
Slika 40. Dijagram naprezanje-progib za prvih 11 uzoraka iz serije LR........43
Slika 41. Dijagram naprezanje-progib za drugih 11 uzoraka iz serije LR44
Slika 42. Dijagram naprezanje-progib za zadnjih 11 uzoraka iz serije LR45
Slika 43. Dijagram naprezanje-progib za prvih 11 uzoraka iz serije LT46
Slika 44. Dijagram naprezanje-progib za drugih 11 uzoraka iz serije LT47
Slika 45. Dijagram naprezanje-progib za zadnjih 11 uzoraka iz serije LT48
Slika 46. Dijagram naprezanje-progib za prvih 11 uzoraka iz serije L45°49
Slika 47. Dijagram naprezanje-progib za drugih 11 uzoraka iz serije L45°50
Slika 48. Dijagram naprezanje-progib za zadnjih 11 uzoraka iz serije L45° ..51
Slika 49. Uzorak za ispitivanje gustoće ..52
Slika 50. Funkcija komulativne razdiobe podataka za normaliziranu savojnu čvrstoću ..54
Slika 51. Prikaz regresijske jednadžbe za savojnu čvrstoću55
Slika 52. Prikaz komulativne razdiobe podataka za normalizirani modul elastičnosti ..56
Slika 53. Prikaz regresijske jednadžbe modula elastičnosti57
Slika 54. Prikaz Weibullove razdiobe za ispitivanje savojne čvrstoće58
Slika 55. Histogram rezultata mjerenja za savojnu čvrstoću59
Slika 56. Weibullove razdioba za ispitivanje modula elastičnosti60
Slika 57. Histogram rezultata mjerenja za modul elastičnosti60
POPIS TABLICA

Tablica 1. Prikaz modula elastičnosti za tri tipa zrelosti drva (obična američka duglazija)...12
Tablica 2. Čvrstoća na vlak u radijalnom i tangencijalnom presjeku[5]15
Tablica 7. Opći podaci o uzorku i određene starosti33
Tablica 8. Oznake veličina i mjernih jedinica ...42
Tablica 9. Rezultati ispitivanja za prvih 11 uzoraka iz serije LR43
Tablica 10. Rezultati ispitivanja za za drugih 11 uzoraka iz serije LR44
Tablica 11. Rezultati ispitivanja za zadnjih 11 uzoraka iz serije LR45
Tablica 12. Rezultati ispitivanja za prvih 11 uzoraka iz serije LT46
Tablica 13. Rezultati ispitivanja za drugih 11 uzoraka iz serije LT47
Tablica 14. Rezultati ispitivanja za zadnjih 11 uzoraka iz serije LT48
Tablica 15. Rezultati ispitivanja za prvih 11 uzoraka iz serije L45°49
Tablica 16. Rezultati ispitivanja za drugih 11 uzoraka iz serije L45°50
Tablica 17. Rezultati ispitivanja za zadnjih 11 uzoraka iz serije L45°51
Tablica 18. Ukupni rezultati ispitivanja za uzorke A-G53
Tablica 19. Statistički podaci za rezultate mjerenja58
Tablica 20. Usporedba recentnog i subfossilnog poljskog brijesta61
POPIS OZNAKA

<table>
<thead>
<tr>
<th>Indeksi</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>longitudinalni smjer</td>
</tr>
<tr>
<td>R</td>
<td>radijalni smjer</td>
</tr>
<tr>
<td>T</td>
<td>tangencijalni smjeru</td>
</tr>
<tr>
<td>LT</td>
<td>smjer sile i tijeka godova su pod kutom od 0°</td>
</tr>
<tr>
<td>LR</td>
<td>smjer sile i tijeka godova su pod kutom od 90°</td>
</tr>
<tr>
<td>L45°</td>
<td>smjer sile i tijeka godova su pod kutom od 45°</td>
</tr>
<tr>
<td>t</td>
<td>tlačno</td>
</tr>
<tr>
<td>v</td>
<td>vlačno</td>
</tr>
<tr>
<td>∥</td>
<td>paralelni smjer</td>
</tr>
<tr>
<td>⊥</td>
<td>okomiti smjer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>E<sub>L</sub>, E<sub>R</sub>, E<sub>T</sub></td>
<td>GPa</td>
<td>modul elastičnosti u označenom smjeru</td>
</tr>
<tr>
<td>E<sub>drva</sub></td>
<td>GPa</td>
<td>modul elastičnosti drva (opća oznaka)</td>
</tr>
<tr>
<td>G<sub>LT</sub>, G<sub>TR</sub>, G<sub>LR</sub></td>
<td>GPa</td>
<td>modul smika u označenom smjeru</td>
</tr>
<tr>
<td>σ<sub>vlak</sub></td>
<td>MPa</td>
<td>čvrstoća drva na vlak</td>
</tr>
<tr>
<td>σ<sub>tlak</sub></td>
<td>MPa</td>
<td>čvrstoća drva na tlak</td>
</tr>
<tr>
<td>σ<sub>smicanje</sub></td>
<td>MPa</td>
<td>čvrstoća drva na smicanje</td>
</tr>
<tr>
<td>σ<sub>sav</sub></td>
<td>MPa</td>
<td>čvrstoća drva na savijanje</td>
</tr>
<tr>
<td>σ<sub>udarac</sub></td>
<td>kJ/m<sup>2</sup></td>
<td>čvrstoća na udarac</td>
</tr>
<tr>
<td>ρ</td>
<td>g/cm<sup>3</sup></td>
<td>gustoća</td>
</tr>
</tbody>
</table>
SAŽETAK

Ključne riječi: savojna čvrstoća, savojni modul elastičnosti, subfosilno drvo, Weibullova distribucija
SUMMARY

Wood is a natural polymer, easily workable, affordable and environmentally friendly material. Because of anisotropic structure, mechanical properties are directed. In this thesis, the influence of orientation structure was studied on bending strength and bending modulus of elasticity on subfossil elm wood. Subfossil wood is preserved trunk that is hundreds of years have been in the water streams, in very specific condition. Elm is very rarely found as subfossil wood, because of the Dutch disease has almost disappeared from the natural forests of Southeast Europe. The test samples were cut from about 670 years old trunk extracted from the river Sava, between Grebnice and Domaljevac in Bosanska posavina. The microscopic analysis of three typical sections (cross, radial and tangential) has shown that trunk is a tree of the genus *Ulmus* (elm). Bending strength and bending modulus of elasticity were determined by the three point bending test. Three different series of samples - LT, L45 ° and LR were examined. Direction of flexural force was vertical to the fibers in all tested samples, and the direction of force is changed in relation to the course of the growth rings: 0 ° (LT), 45 ° (L45 °) and 90 ° (LT). For both tested properties the values are the largest in the series L45 °. The values in the LT series are slightly higher than the values of the LR series. The results were statistically analyzed by Weibull distribution. The coefficient of determination of Weibull function is very high (close to 1) for all series and for both properties. It was found that the value of bending strength and bending modulus of elasticity of the subfossil elm wood are not lower in order to the recent elm, despite the 700-years staying in very specific conditions.

Key words: bending strength, bending modulus of elasticity, subfossil wood, Weibull distribution
1. Uvod

U ovom radu drvo se promatra kao tehnički materijal. U prvom dijelu rada opisana su mehanička svojstva koja su najznačajnija za uporabu i obradu drva. Proučavano je fosilizirano drvo brijesta te su njegova mehanička i druga svojstava uspoređena s literaturnim vrijednostima za recentno drvo iste vrste. Fosilizirano drvo je pojam koji se koristi za drvo koje kroz dugi vremenski period (od nekoliko stotina pa do nekoliko desetina tisuća godina) boravilo u mulju i bilo izloženo utjecaju tekuće vode u procesu humifikacije. Fosilizirani brijest se rijetko pronašao. Puno češće se u koritu rijeke Save pronašao fosiliziran hrast (abonos), otprilike 100 puta češće nego brijest ili jasen. Početkom 20. stoljeća brijest je poharala Holandska bolest (Ophiostoma novo-ulmi Brasier), tako da danas, u prirodnim sastojinama šuma na području Posavine, nema živih jedinki ove vrste.

Usmjerenost struktura i sadržaj vlage u drvu bitno utječu na mehanička i ostala svojstva. Fosilizirano drvo je tijekom duljeg vremenskog perioda bilo izloženo specifičnim uvjetima pri čemu se njegova mikrostruktura mijenjala (taloženje minerala i sl.), a što je utjecalo na trajnost i konzervaciju te u konačnici i na svojstva. U eksperimentalnom dijelu rada određen je utjecaj usmjerenosti mikrostrukture na vrijednost savojne čvrstoće i savojnog modula elastičnosti u longitudinalnom smjeru. Poznato je da na svojstva u longitudinalnom smjeru utječe zakrivljenost godova pa je i to uzeto u obzir pri ispitivanju. Također je određena gustoća subfosilnog brijesta i uspoređena s literaturnim podacima za istu vrstu.

Eksperimentalni rezultati statistički su obrađeni Weibullovom razdiobom koja je primjenjiva za materijale i ispitivanja s velikim rasipanjem rezultata.
2. Struktura i svojstva drva

2.1 Kemijski sastav i struktura materijala

Drvo je kemijski uglavnom sastavljeno od ugljikohidrata (celuloze i hemiceluloze) i lignina te nešto malo ekstrahiranih tvari. Celuloze i hemiceluloze ima oko 60 do 75 % mase suhe tvari, a lignina 18 do 35 % mase suhe tvari. Ekstrakata i drugih spojeva može biti od 4 do 10 % mase. Zanimljivo je da se kemijski pojedine vrste drva malo razlikuju. Gustoća suhe tvari od koje je drvo građeno iznosi oko 1500 kg/m3 neovisno o vrsti drva. Ostatak prostora su razne šupljine (kapilare) koje mogu biti ispunjene zrakom ili vodom. Razne vrste drva imaju različite gustoće u rasponu od 40 kg/m3 (balsa) do 1400 kg/m3 (lignum vitae), ovisno o varijacijama u rasporedu, veličini i debljini vlakana i stijenki traheja i traheida (slika 1).

Slika 1. Mikrostruktura pod svjetlosnim mikroskopom i idealna struktura [1]

Gledajući u poprečnom presjeku vidi se da je drvo nehomogeno i sastoji se od niza cilindričnih elemenata grupiranih u koncentričnim krugovima (godovima) formiranim oko srca presjeka. Osnovni građevni element drva je drvna stanica - traheida. Idealizirana struktura drva često se prikazuje kao snop cjevčica koncentrično raspoređenih oko stredišta.

Biljna se stanica sastoji od stanične stijenke i protoplasta. Protoplast (slika 2) uključuje protoplazmu u koju su ukloljene vakuole, organeli, membranski sustavi, makromolekularne nakupine. Protoplazma je od stanične stijenke odvojena plazmatskom membranom (plazmalemom), a od vakuole tonoplastnom membranom (tonoplastom).
Slika 2. Grada biljne stanice[2]

Stanična stijenka izgrađena je od celuloznih mikrofibrila uronjenih u amorfni polisaharidni matriks kojeg čine hemiceluloza, pektini i male količine strukturnih proteina. Biljne stanice imaju dva tipa stijenki: primarne (mlade stanice koje rastu) i sekundarne (stanice koje su završile rast). U sekundarnoj staničnoj stijenci mogu se gomilati tvari kao što su lignin, suberin, različite anorganske mineralne tvari (kalcijev karbonat, silicijev dioksid, kalcijev oksalat), kutin itd.

Citoplazma je kompleksna masa koja se sastoji najvećim dijelom od vode. U citoplazmi se nalaze različiti organeli i makromolekulske nakupine. Citosol je citoplazma bez organela. U citosolu se nalazi gusta trodimenzionalna mreža proteinskih niti (citoskelet).

Plazmatska membrana sastoji se od dva sloja fosfolipida u koji su uronjeni protein (model tekućeg mozaika). Proteini djeluju kao specifični receptori, enzimi ili prenositelji, a razlikuju se dva tipa: integralni i periferni. Plazmatske membrane sadrže i ugljikohidrate koji imaju signalnu ulogu. Plazmatske membrane su probirno propusne (selektivno permeabilne).[2]

U makoskopskom prikazu razlikujemo nekoliko značajnih elemenata u poprečnom presjeku stabla (slika 3) Srčika drva predstavlja anatomsku os stabla. Sreževina je dio drva koji je prošao fazu rasta i smatra se pravim drvom u užem smislu i ima funkciju nošenja stabla. Bjeljika drva je dio debla u kojem se još odvija proces izmjene tvari. Kod nekih vrsta je upotrebljava kao grada. Kora je vanjski sloj drva, štiti drvo od vanjskih utjecaja i uglavnom
nije upotrebljiva kao tehnički materijal. Između kore i bjeljike nalazi se kambij, tvorno tkivo iz kojeg svake godine nastaje novi sloj ksilema (novi god) i floema (kora).

Slika 3. Građa debla[1]

Usmjerenost strukture drva uzrokuje anizotropnost mehaničkih i drugih svojstva u smjeru godova (okomito na uzdužnu os drva) i okomito na njih (paralelno s uzdužnom osi drva). Zato je važno prilikom ispitivanja svojstava drva navesti područje i presjek iz kojeg su izrezani uzorci za ispitivanje.

Slika 4. Prikaz presjeka na drvu [3]
S obzirom na usmjerenost strukture na drvu se razlikuju tri karakteristična presjeka: poprečni, radijalni i tangencijalni (slika 4). Poprečni presjek je okomit na uzdužnu os biljnog trupca, radijalni presjek je paralelan s uzdužnom osi biljnog valjka i uvijek prolazi kroz njegovo središte, a tangencijalni presjek je paralelan s uzdužnom osi biljnog valjka i okomit na polumjer biljnog valjka. Prilikom ispitivanja mehaničkih svojstava važno je definirati vrstu presjeka i poziciju iz koje je uzorak izrezan.

2.2 Fizikalna i kemijska svojstva drva

Drvo diše i ono je difuzno što znači da je propusno u oba smjera za razliku od PVC-a i armiranog betona. Izgradnjom dvene konstrukcije dobije se zdrav, kisikom pun i prirodno važan prostor koji je idealan za život. Temperatura drvenih elemenata u unutrašnjosti uvijek je jednaka temperaturi zraka u tim prostorijama, a to svojstvo drva kao tehničkog materijala osigurava osnove za proučavanje i korištenje u tehničkim disciplinama. Elektrostaticka svojstva drva otežavaju kolanje prašine po prostorijama, što olakšava život osobama sklonim alergijama.

U fizikalno--kemijska svojstva ubrajamo trajnost i zapaljivost. Opažamo ih kada na drvo djeluju sile koje ne mijenjaju samo sastav, već i kemijska svojstva drva. Kod odabira materijala za različita konstrukcijska rješenja, zbog svoje trajnosti drvo neće biti prvi izbor i većina metalnih materijala su bolji izbor. Trajnost je svojstvo drva da krate ili dulje vrijeme odolijeva utjecajima koji mijenjaju njegov prirodna svojstva. Trajnije je ono drvo, koje se siječe u zimsko doba. Tada je udio vlage u drvu manji, a niske temperature onemogućavaju razvoj gljivica i kukaca. Najviše topivih organskih tvari kojima se kukci prehranjuju sadrži ono drvo koje se siječe u kasno ljeto i u jesen. Prirodnim sušenjem se ove tvari raspadaju polaganije, što povećava opasnost od napada insekata. Veća ili manja trajnost ovisne o načinu uporabe drveta. Drvo u suhoj okolini ili posve uronjeno u vodu ubrajamo u vrlo trajne tvari. Dokaz za to su ostaci starih drvenih brodova i čamaca, koje arheolozi otkrivaju na dnu mora i u močvarama, ili namještaj iz faraonskih grobnica, izgrađenih ispod zemlje u suhim pustinjama. U takvim uvjetima drvo može izdržati i tisuće godina. Najmanju trajnost ima drvo u površinskim slojevima zemlje ili tik iznad nje (ograde, stupovi, željeznički pragovi i sl).[3]

Na samoj površini tla postoji dovoljno kisika i vlage za ubrzani razvoj gljivica. Zato za proizvode koje ugrađujemo u zemlju odabiremo trajnije vrste drva: hrast, kesten, akaciju, a pod određenim uvjetima i bor. U dubokoj i stajačoj vodi mnoge vrste drva imaju razmjerno veliku trajnost. Za vodogradnje i slične konstrukcije prikladne su vrlo trajne vrste, kao što su
ariš, hrast, akacija, tik, domaći kesten i bukva, koja na otvorenom nije trajna. U morskoj vodi je trajnost drva ovisna o koncentraciji soli, te dubini i temperaturi mora. Veliku trajnost ima drvo u stambenim prostorima, iako vrlo brzo propada u vlažnoj i toploj okolini (rudarski rovovi, prostori u klijetima, potpalublja brodova i sl.).

Kod ugrađenih drvnih proizvoda važno je osiguravati stalan i nizak stupanj vlage; ne smije ih oblijevati voda niti se na njima smije sakupljati kondenzat. Trajnost drvenih proizvoda povećava se odgovarajućom zaštitom. Proizvod treba se pravilno konstruirati i ugraditi da bi se osiguralo brzo i nesmetano otjecanje vode. U tom slučaju govorimo o konstrukcijskoj zaštiti, koja je posebno značajna u proizvodnji prozora i druge građevinske stolarije. Dubinsku zaštitu ostvarujemo impregnacijom (kod stupova, ograda i sl.), to jest zaštitnim premazima (slika 5), prije svega lakovima i glazurama, kojima se drvo zaštićuje površinom. No, ako je drvo već počelo propadati, moramo upotrijebiti agresivnije metode zaštite. Za to se koriste različita kemijska sredstva ili drugi dugotrajni i skupi postupci.

Slika 5. Prikaz drvene konstrukcije u atmosferskim uvjetima [3]

Slika 5. prikazuje drvenu konstrukciju koja je izložena atmosferilijama te zapaljivosti i vlažnosti. Drvo je zapaljiv materijal i počinje gorjeti na približno 270 °C (točka zapaljenja). Pri tome se anatomski i kemijski posve menja. Glavni produkti gorenja su vodena para i različiti plinovi, koji nastaju pri raspadanju drveta. Nesagorjeli ostatak, koji u sebi sadrži različite mineralne sastojke, nazivamo pepelom. Zapaljivost drveta ujedno znači i stalnu
opasnost od požara, a naročito kod drvenih građevinskih konstrukcija (podrumi, krovne konstrukcije i nosive konstrukcije od lameliranog drveta).

Međutim, pravilnom uporabom kemijskih zaštitnih sredstava (antipirena) zapaljivost drva može se dosta umanjiti, ili čak i posve spriječiti, tako da se može dobiti tražena vatrootpornost (30-60 min do početka gorenja). Prednost, primjerice drvenih nosača u odnosu na čelične, da (u ovisnosti o kvaliteti čelika) kod visokih temperatura drvo postepeno gubi mehanička svojstva izgaranjem, dok je taj proces kod čelika brži. Kod požara drvo će izgoriti u vanjskoj ovojini (što će mu donekle smanjiti nosivost), dok će se čelik jednostavno popustiti pri takvim temperaturama, tj. doći će do pada vrijednosti mehaničkih svojstava.

Udio vode u svježem drvu se znatno razlikuje među vrstama drva, pa i unutar iste vrste. Više ili manje je vodom zasićena bjeljika, koja u živom drvu provodi vodu iz njegovog korijenskog sustava u krošnju. Vlažnost bjeljike se sve više snižava prema granici sa srževinom.

3.1. Modul elastičnosti

Slika 6. Modul elastičnosti za drvo i za druge skupine tehničkih materijala [CES]

Najčešće se ispitivanje ovog svojstva provodi na univerzalnoj kidalici, sa standardnim uzorcima. Prilikom mjerenja važno je poznavati relativni udio vlage u drvu (0%, 10-15%, sirovo drvo), temperaturu prostorije te osigurati sljedivost rezultata mjerenja. S obzirom na tri karakteristična presjeka drva razlikuju se:

- modul elastičnosti u longitudinalnom smjeru - \(E_L \)
- modul elastičnosti u radijalnom smjeru - \(E_R \)
- modul elastičnosti u tangencijalnom smjeru - \(E_T \)

Ako su uzorci opterećeni na savijanje, govori se o savojnom modulu elastičnosti (slika 7). Savojna sila može djelovati u jednoj ili dvije točke, pa se govori o ispitivanju na savijanje u jednoj ili dvije točke.
Slika 7. Ispitivanje savojnog modula elastičnosti u jednoj točki (a), ispitivanje u dvije točke (b), i ispitni uzorci za određivanje modula elastičnosti (c) [5]

Najveće vrijednosti modula elastičnosti kod iste vrste drva mjere se u longitudinalnom smjeru i čak su 20-ak puta veće u odnosu na vrijednosti za E_R i E_T. Vrijednosti za modul elastičnosti u radijalnom smjeru (E_R) su oko 2 puta veće od vrijednosti E_T (slika 8).

U tablici 1. Prikazani su tri različita modula elastičnosti za običnu američku dugaziju. U tablici je vidljivo da se vrijednosti razlikuju i s obzirom na položaj uzorka u godu (rani i kasni dio goda).

| Tablica 1. Prikaz modula elastičnosti za tri tipa zrelosti drva (obična američka dugazija) |
|---|-----------|-----------|
| E_L (MPa) | E_R (MPa) | E_T (MPa) |
| Puno drvo | Rani dio goda | Kasni dio goda |
| 14500 | 10400 | 2070 |
| 960 | 566 | 1752 |
| 620 | 152 | 1215 |

Općenito se može zaključiti da vrijednosti modula elastičnosti ovise o sljedećim faktorima:

- vrsti drva
- sadržaju vlage
- gustoći
- temperaturi
- vrsti presjeka
- količini slobodne vode

Podaci za module elastičnosti se dobivaju raznim testovima, međutim, podaci za E_T i E_R često se definiraju u odnosu na E_L [6]. Prosječne vrijednosti modula elastičnosti drva kreću se u granicama:

\[E_L = 3 - 25 \text{ GPa} \]

\[E_T = (1/23 - 1/40) * E_L \] \hspace{1cm} (1)

\[E_R = (1/6 - 1/23) * E_L \]

Matematički izraz glasi:

\[E = \frac{l^3 \cdot (F_2 - F_1)}{4bt^3 \cdot (a_2 - a_1)} \text{ (GPa)} \]

gdje su:

\((F_2 - F_1) \) - prirast sile \((F_1 = 0,1 F_{\text{max}}; \ F_2 = 0,4 F_{\text{max}}) \text{ (N)} \)

\(L \) - razmak između oslonaca, (mm)

\(b \) - širina ispitnog uzorka, (mm)

\(t \) - visina ispitnog uzorka, (mm)

\((a_1, a_2) \) - progibi ispitnog uzorka za sile \(F_1 \) i \(F_2 \), (mm)

3.3 Vlačna čvrstoća

Vlačna čvrstoća ili čvrstoća na vlak definirana je kao najveći otpor nastao uslijed djelovanja sila iste orijentacije, ali suprotnog smjera koje ga nastoje razvući paralelno ili okomito na smjer vlakana. Čvrstoća na vlak kod drva se razlikuje ovisno o djelovanju sile pa može biti paralelna i okomito na vlakanca [5]. Standardni test ispitivanja vlačne čvrstoće provodi se prema izrazu (3) [5]. Uzorci za ispitivanje na vlak prikazani su na slici 10.
Vlačna čvrstoća računa se prema izrazu:

\[
\sigma = \frac{F_{\text{max}}}{A_0}, \text{ (N/mm}^2\text{)}
\]

(3)

gdje su:

- \(F_{\text{max}}\) – maksimalna sila (N)
- \(A_0\) - površina presjeka na mjestu loma

Način ispitivanja provodi se prema normi koja propisuje i pripremu probe te tijek ispitivanja. Prava vrijednost velike čvrstoće na vlak ne može se u potpunosti iskoristiti u praksi. Treba biti oprezan, jer je čvrstoća na smicanje znatno manja od čvrstoće na vlak i iznosi najviše 10% čvrstoće na vlak u smjeru vlakanaca. U praksi dolazi do lomova, uslijed smicanja i cijepanja, iako čvrstoća na vlak zadovoljava uvjete rada. Čvrstoća na vlak znatno se smanjuje uslijed pogrešaka u gradi drva.

Dobivene vrijednosti se preračunavaju s korekcijkim faktorom da bi se osigurala sljedivost rezultata. Tako je procijenjeno da se vrijednosti ispitivanja kodiraju na sadržaj vlage od 12%. Isto vrijedi za sva mehanička svojstva.

Također ispitivanja se provode u radijalnom i tangencijalnom presjeku zbog anizotropnosti.

\[\begin{array}{|c|c|c|}
\hline
& \sigma_T \ (\text{N/mm}^2) & \sigma_R \ (\text{N/mm}^2) \\
\hline
\text{četinjače} & 0,025-0,030 & 0,040-0,050 \\
\text{listače} & 0,040-0,065 & 0,070-0,100 \\
\hline
\end{array} \]

3.4 Tlačna čvrstoća

Tlačna čvrstoća ili čvrstoća na tlak je definirana kao najveće naprezanje ako na tijelo, smješteno na horizontalnoj podlozi, djeluje sila okomito na podlogu koja ga nastoji stlačiti, smrvidi ili zgnječiti (slika 12).

Tlačna čvrstoća računa se prema izrazu (4):

\[\sigma_T = \frac{F_{\text{max}}}{A_0}, \ (\text{N/mm}^2) \] (4)

gdje su:

\[F_{\text{max}} \] – maksimalna tlačna sila (N)

\[A_0 \] - površina presjeka ispitnog uzorka

Čvrstoća na tlak također se ispituje prema normom definiranim pravilima u točno određenim uvjetima.
3.5 Čvrstoća na savijanje

Čvrstoća na savijanje ili savojna čvrstoća je najveće unutrašnje naprezanje koje se javlja ako na to tijelo djeluje sila koja ga nastoji slomiti ili saviti. [5]

Savojna čvrstoća računa se prema izrazu:

$$\sigma_s = \frac{3 \cdot F \cdot L}{2 \cdot b \cdot h^2}, \text{ (N/mm}^2)$$

gdje su:

- L - razmak između oslonaca, (mm)
- b - širina gredice, (mm)
- h - visina gredice, (mm)

Savojna čvrstoća ispituje se najčešće na malim gredicama pravokutnog presjeka. Dužina gredice je, prema normi, jednaka ili veća od 18h (h=visina gredice) (slika 10). Gredica je poduprta na dva oslonca, s međusobnim razmakom od 15h. Mehanička sila F djeluje na sredini na godove. Postupak određivanja čvrstoće na savijanje prikazan je na slici 13 i opisan izrazom (6) [7].

3.6 Smična čvrstoća

Čvrstoća na smicanje je otpor kojim se drvo opire vanjskoj sili koja nastoji pomaknuti njegove dijelove paralelno s vlakancima ili okomito na taj smjer.

Matematička formulacija ovog problema glasi:

\[
\sigma_w = \frac{F_{\text{max}}}{b \cdot l}, \text{ (N/mm}^2\text{)}
\]

gdje su:

- \(F_{\text{max}}\) - maksimalna sila, (N)
- \(b, l\) - dimenzije smične površine, (mm)

Smična čvrstoća važna je kod konstrukcija koje imaju zglobove dijelove, uklještenja te su u kontaktu s drugim konstrukcijskim elementima. Prilikom konstruiranja važno je obratiti pozornost na vrstu smične čvrstoće jer je različita po presjecima i vlaknima. Ovakva vrsta naprezanja nastaje ako u ravnini smicanja djeluju posmične sile (slika 14). Smjer djelovanja posmičnih sila obično je u smjeru vlakana ili okomito na njih, a kod frontalnog smicanja u smjeru godova ili okomito na njih. [5]

[Slika 14. Čvrstoća na smik [5]]

Smično naprezanje nastaje ako u ravnini smicanja djeluju posmične sile. Površina smicanja može biti uzdužna (radijalna ili tangencijalna), poprečna (frontalna) i dijagonalna. Smjer djelovanja posmičnih sila kod uzdužnih površina smicanja može biti u smjeru vlakanaca ili okomito na vlakanca, a kod frontalne površine smicanja taj smjer može biti paralelno s godovima ili okomito na godove. Frontalna ravnina je ravnina poprečnog presjeka. Prilikom naprezanja mogu biti prisutna smična naprezanja u svim smjerovima. Uzorak za ispitivanje čvrstoće na smicanje prikazan je na slici 15.
Slika 15. Metoda određivanja smične čvrstoće[5]

Razlikujemo smičnu čvrstoću okomitu i paralenu s vlakancima.

Kad je smična čvrstoća paralelna s vlakancima, površina smicanja je tangencijalna ili radijalna, a kut između vlakanaca i ravnine smicanja je 0°.

Kad je smična čvrstoća okomita na vlakna, ravnina smicanja je paralelna s poprečnim presjekom. Ova čvrstoća puno je veća od smične čvrstoće paralelne na vlakana.[5]

<table>
<thead>
<tr>
<th>(\sigma_w) (paralelno), N/mm²</th>
<th>četinjače</th>
<th>listače</th>
<th>egzote</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5-10</td>
<td>4,5-16</td>
<td>2-15</td>
<td></td>
</tr>
</tbody>
</table>

3.7 Čvrstoća na cijepanje

Ova čvrstoća specifična je samo za drvo te se koristi prilikom proračuna u slučaju spajanja drva s drugim materijalima. Definirana je kao otpor kojim se drvo opire rastavljanju na dva dijela uslijed prodiranja klina postavljenog u procijep (slika 16). Naprezanje koje se javlja u ravnini cijepanja zove se naprezanje na cijepanje, odnosno granična vrijednost ovog naprezanja je čvrstoća na cijepanje.

Slika 16. Cijepanje klinom[8]
Matematički izraz glasi:

\[\sigma_c = \frac{F_{\text{max}}}{A_0}, \text{ (N/mm}^2\text{)} \]

(7)

gdje su:

- \(F_{\text{max}} \) - maksimalna sila koju postiže klin, (N)
- \(A_0 \) - površina na koju liježe klin, (mm\(^2\))

Svojstvo dobiveno iz čvrstoće na cijepanje je cjepljivost te je obrnuto proporcionalno u odnosu na čvrstoću cijepanja. Cjepljivost je najveća u smjeru drvnih trakova. Danas je svojstvo cjepljivosti važno kod spajanja drvenih konstrukcija s metalnim dijelovima, kod spajanja zakovica i drva, uporabe klinova, spajanja vijcima i slično.

3.8 Čvrstoća na udarac

Čvrstoća na udarac ili žilavost definira se kao otpor kojim se drvo opire radu trenutnog dinamičkog naprezanja. Izražava se kao rad, po jedinici površine:

\[A_w = \frac{1000 \cdot Q}{b \cdot h}, \text{ (kJ/m}^2\text{)} \]

(8)

gdje su:

- \(Q \) - rad utrošen za lom probe;

\[\text{pri čemu je } Q = \int F \cdot ds \text{ (N)} \]

(9)

- \(b \), \(h \) - dimenzije ispitne probe, (mm).

Trenutno dinamičko naprezanje (čvrstoća na udarac) jedno je od mehaničkih svojstava drva koje je najvažnije u eksploataciji. Drveni dijelovi zrakoplova, automobila, sportskih rekvizita, mehanizama i sl. prilikom dinamičkih naprezanja (udarac) pokazuju sklonost lomu i pritom dovode u neposrednu opasnost samo vozilo i osobu koja upravlja ili koristi takve naprave. [2]

Ispitivanje žilavosti vrši se na Charpyjevom batu (slika 17). Na uređaj se postavi ispitna epruveta standardnih dimenzija te se na nju pusti bat s početne visine \(H \). Bat se popne do visine \(h \), a na skali se, prema razlici (\(H-h \)) očitava vrijednost čvrstoće na udarac.
3.9 Tvrdoća drva

Tvrdoća drva je otpor drva prema prodiranju nekog drugog tvrdega tijela u njegovu površinu. Prodiranje drugog materijala može biti postepeno djelovanjem sile ili trenutno posredstvom udarca. Kako je drvo anizotropan materijal, razlikujemo tvrdoću prema karakterističnim presjecima:

- frontalna ili longitudinalna
- tangencijalna
- radijalna

Općenito se tvrdoća može mjeriti metodom po Brinellu [28]. Tom metodom se tvrdoća mjeri utiskivanjem čelične kuglice promjera 10 mm u drvo konstantnom silom od 500 N ili 1000 N, ovisno o tvrdosti drva. Nakon 30 s, izmjeri se srednji promjer kalote nastalog u površini drva s točnošću od 0,1 mm. Na slici 19 je prikazana shema određivanja tvrdoće drva prema Brinellu.
3.9.1 Otpornost protiv habanja

Pojam koji je usko povezan s tvrdoćom, ali se ipak razlikuju. Ovo mehaničko svojstvo predstavlja opiranje postepenom mehaničkom narušavanju (trošenju) površine drva uslijed djelovanja vanjskih mehaničkih sila. [5]

Mehanički proces habanja najviše se uočava kod drvenih stepenica, pragova, skija, parketa i sl. Ispitivanje habanja vrši se improvizacijskim metodama, jer trenutno ne postoji normirano ispitivanje za određivanje ovog svojstva. Može se vršiti pomoću pijeska, određenog protoka i veličine zrna, brusnih ploča i papira, čelične metle ili strugaca.

Otpornost protiv habanja mjeri se debljinom sloja koji je skinut s ravne i glatke površine uzorka habanjem ili preko smanjenja mase ili volumena.

Čimbenici koji utječu na otpornost protiv habanja su:

- vrsta drva
- grada drva
- gustoća
- presjek
- smjer habanja
- udio vode
- obrada površine

Na slici 20. prikazan je uređaj za ispitivanje otpornosti protiv habanja. Izum je djelo njemačkog znanstvenika F. Kollmana.

4. Čimbenici mehaničkih svojstava

Na mehanička svojstva utječu razni čimbenici. Unutar pojedine vrste drva, postoje značajne varijacije mehaničkih svojstava u zavisnosti o starosti drva, nadmorskoj visini rasta drva, i sličnim čimbenicima. U tablici 4 prikazani su koeficijenti varijacije određenog mehaničkog svojstva, koji su ustanovljeni brojnim pokusima [9].

Tablica 4. Koeficijenti varijacije vrijednosti mehaničkih svojstava [9]

<table>
<thead>
<tr>
<th>Svojstvo</th>
<th>Koeficijent varijacije (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul elastičnosti</td>
<td>22</td>
</tr>
<tr>
<td>Čvrstoća na savijanje</td>
<td>12</td>
</tr>
<tr>
<td>Najveće opterećenje</td>
<td>34</td>
</tr>
<tr>
<td>Čvrstoća na udarac</td>
<td>25</td>
</tr>
<tr>
<td>Čvrstoća na tlak paralelno na vlakanca</td>
<td>18</td>
</tr>
<tr>
<td>Čvrstoća na tlak okomito na vlakanca</td>
<td>28</td>
</tr>
<tr>
<td>Čvrstoća na smicanje</td>
<td>25</td>
</tr>
<tr>
<td>Tvrdoća</td>
<td>20</td>
</tr>
<tr>
<td>Specifična gustoća</td>
<td>10</td>
</tr>
</tbody>
</table>

Prilikom izbora materijala za granju zrakoplova, zračnih jedrilica, brodova i sl. važno je znati omjer čvrstoće i gustoće drva. Koeficijent kvalitete drva predstavlja odnos nekog specifičnog mehaničkog svojstva i gustoće prema izrazu (10).

\[
k = \frac{\sigma}{\rho}
\]

(10)

gdje su:

\[\sigma - \text{čvrstoća, (N/mm}^2\)\]

\[\rho - \text{gustoća drva, (kg/m}^3\)\]
4.1 Weibullova razdioba mehaničkih svojstava heterogenih materijala

Analiza podataka dobivenih mjerenjem uključuje poznavanje zakonitosti raspodjele podataka prema kojoj određujemo statističke podatke. Razdioba koja opisuje ove podatke je Weibullova razdioba. Weibull je razvio teoriju zasnovanu na konceptu otkazivanja funkcije najslabijeg člana, pomoću koje se može vrlo dobro objasniti rasipanje čvrstoće anizotropnih materijala. Pri tome je važan preduvjet da je otkazivanje funkcije određeno jednim jednim tipom pogreške (nehomogenost strukture). Weibull izabire poseban oblik razdiobe ekstremnih vrijednosti za opisivanje ponašanja čvrstoće, koja se kasnije prema njemu nazvala Weibullova razdioba. Nakon poznavanja parametara razdiobe dobiva se jednoznačna veza između opterećenja i vjerojatnosti loma. Weibullov modul \(m \) mjera je za rasipanje rezultata. Što je Weibullov modul veći, materijal je homogeniji (pogreške su raspodijeljene po cijelom volumenu), a time je i krivulja distribucije rasipanja uža. Najčešće vrijednosti Weibullova modula \(m \) su u rasponu \(10 < m < 20 \).

Ova dvoparametarska poluempirijska razdioba je dana izrazom:

\[
f(x) = m(x)^{m-1} \exp(-x)^m \quad (11)
\]

gdje je \(f(x) \) učestalost razdiobe slučajne varijable \(x \), a \(m \) je faktor oblika, obično se odnosi na Weibullov modul.

Kada je jednadžba (11) nacrtana kao na slici 21., širina i oblik krivulje ovise o \(m \) – što je \(m \) veći, razdioba je uža (krivulja je uža).

![Slika 21. Utjecaj parametra m na širinu krivulje](image_url)
Funkcija gustoće za kontinuirane varijable je asimetrična oko aritmetičke sredine te uzima samo pozitivne racionalne vrijednosti, a dana je izrazom (12):

\[P = \left(\frac{m}{\sigma_0} \right) \left(\frac{\sigma_{fm}}{\sigma_0} \right)^{m-1} \exp \left[-\left(\frac{\sigma_{fm}}{\sigma_0} \right)^m \right] \]

Gdje je \(\sigma_0 \) parametar skaliranja, a računa se pomoću izraza (13):

\[\sigma_0 = \exp \left(\theta \ln \sigma_0 \right) \]

Funkcija distribucije komulativne varijable koja objašnjava vjerojatnost pogreške mjerene varijable dana je izrazom (14):

\[P = 1 - \exp \left[-\left(\frac{\sigma_{fm}}{\sigma_0} \right)^m \right] \]

gdje je:

\(\sigma_{fm} \) označava savojnu čvrstoću

\(\sigma_0 \) - parametar skaliranja.
5. Poljski brijest i njegova fosilizacija

![Slika 22. Poljski brijest](image)

Stablo brijesta visoko je 20-35 m, široke i razgranate krošnje. Dužina samog debla je 10-15 m, sa srednjim promjerom 1-1,5 m. Makroskopski brijest je drvo čokoladno smede boje srži, uske žučkastobjele bjeljike. Godovi i pore ranog drva uočljivi su na presjeku vizualnim metodama promatranja. Pore kasnog drva su isprekidane, valovite tangent, kose tangent ili višeredne manje isprekidane trake.

Struktura brijesta je prstenasto porozna s krupnim porama ranog drva u jednom do tri niza, s porama kasnog drva u tangentnim vrpcama. Članci traheja su spiralnog zadebljanja, srednjeg dijametra 250 \(\mu m\), koncentracije 35-65 članaka/mm\(^2\) poprečnog presjeka. U trahejama ranog drva nalaze se tankostijene tile, čiji je volumni udio sa trahejama oko 30%. Traheide su nepravilno raspoređene, homogene, visine 15-20 drvnih stanica, širine 3-6 stanica (slika 23).
Slika 23. Grada tkiva stabla listače

5.1 Fizikalna i mehanička svojstva brijesta i primjena

Svi uzorci za planirana ispitivanja izrezani su iz srževine debla subfosilnog brijesta. Na mjestu gdje su uzorci izrezani, izmjerena je širina godova, a vizualnim pregledom je utvrđeno da nema nikakvih grešaka u samom tkivu drva. Zakrivljenost godova je bila minimalna i ujednačena kod svih uzoraka.

<table>
<thead>
<tr>
<th>Fizikalno svojstvo</th>
<th>mjerenje</th>
<th>Srednja vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gostoća standarno suhog drva ρ (kg/m3)</td>
<td>440 640 820</td>
<td>633,4</td>
</tr>
<tr>
<td>Gostoća prosušenog drva $\rho_{1/2-1/3}$ (kg/m3)</td>
<td>480 680 860</td>
<td>673,4</td>
</tr>
<tr>
<td>Gostoća sirovog drva ρ_s (kg/m3)</td>
<td>730 850 1180</td>
<td>920</td>
</tr>
</tbody>
</table>

U tablici 5. date su vrijednosti gustoće pri različitim udjelima vlage. Veliko rasipanje podataka posljedica je anizotronosti strukture.
Od ostalih fizikalnih svojstava važna je i poroznost, koja iznosi oko 58% od ukupnog volumena te udio vlakanaca koji iznosi 51% od ukupnog volumena [11].

<table>
<thead>
<tr>
<th>Svojstvo</th>
<th>Raspon vrijednosti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Čvrstoća na tlak</td>
<td>33…56…73 MPa</td>
</tr>
<tr>
<td>Čvrstoća na vlak, paralelno s vlakancima</td>
<td>65…80…210 MPa</td>
</tr>
<tr>
<td>Čvrstoća na savijanje</td>
<td>56…89…200 Mpa</td>
</tr>
<tr>
<td>Čvrstoća na smik</td>
<td>7….10,5 MPa</td>
</tr>
<tr>
<td>Tvrdoća(po Brinellu), paralelno s vlakancima</td>
<td>64 MPa</td>
</tr>
<tr>
<td>Tvrdoća(po Brinellu), okomito na vlakanca</td>
<td>30 MPa</td>
</tr>
<tr>
<td>Modul elastičnosti</td>
<td>5,9…11,0…16,0 GPa</td>
</tr>
</tbody>
</table>

Osim navedenih mehaničkih svojstava, brijestovina je drvo koje se teško cijepa (visoka čvrstoća na cijepanje), dobro se uteže, čavla, lijepi i polira. Prosušena brijestovina vrlo je dobra za savijanje. Udio vlage u uzorku uvjetuje način sušenja te je važan faktor za obradivost samog debla. Sušenje je vrlo brzo i efikasno, što je uvjetovano lakim gubitkom vode koja je najčešće u porama materijala (slobodna, vezana) [11].

Abonos, eban ili subfosilno drvo su termini koji u hrvatskom jeziku označavaju drvo koje je duže vrijeme bilo u tlu pod utjecajem vode tekućej i procesa humifikacije. Pod pojmom humifikacije smatramo biološki proces kojim se iz produkata razgradnje organske tvari, procesima oksidacije, polimerizacije i kondenzacije stvaraju novi visokomolekularni spojevi. Postoji velik broj vrsta drvja koje su do sada otkrivene, a bile su u navedenim uvjetima, ali najcjenjenije i najčešće je drvo hrasta za koje se koristi i termin crni hrast. Crna boja drvja, odnosno abonosa, posljedica je međusobne kemijske reakcije trijes lounge u drvu i željeza u vodi. Tekuća voda u okruženju abonosa osigurava nepovoljne uvjete za razvoj mikroorganizama i gljiva koji vrše destrukciju drva, a taloženje minerala iz tekuće vode osigurava konzervaciju i trajnost elemenata grada drva. Uslijed svih navedenih čimbenika koji djeluju i doprinose nastanku abonosa, isti mijenjaju kemijsku strukturu, fizikalna i mehanička svojstva takvog drva. Starost abonosa, odnosno vrijeme koje je drvo provelo u navedenim okolnostima, kreće se od nekoliko tisuća do nekoliko desetaka tisuća godina [10]. Na slici 24.
Antun Balaton

Slika 24. Prikaz subfosilnog i recentnog drva[3]

Posebnost i visoka vrijednost abonosa očituje se u trajnosti, estetskim svojstvima, crnoj boji, akustičkim svojstvima, kao i starosti. Od subfosilnog drva se izrađuje furnir, visokokvalitetni i visokovrijedni namještaj, dijelovi glazbenih instrumenata, visokovrijedni proizvodi svakodnevne uporabe, a posebno je cijenjen materijal u kiparstvu i rezbarstvu. Prema dosadašnjim iskustvima abonos se pronalazi slučajno i to najčešće kod radova reguliranja korita potoka i rijeka, kod melioracijskih radova ili kod eksploatacije šljunka u blizini riječnih tokova. Povezivanje termina abonos i arheološko drvo, u terminologiji nije sasvim točno. Arheološko drvo nije nužno ili je vrlo rijetko abonos, jer u povijesti su se koristile različite vrste drva, a ne samo hrastovina, dok je abonos arheološko drvo zbog same starosti, ali nije nužno arheološko drvo, ako nema arheološke vrijednosti.[10]
EKSPERIMENTALNI DIO RADA
6. Materijal za ispitivanje

Materijal ispitivanja je subfosilno drvo poljski brijest (slika 22) je izvađen iz korita rijeke Save u području sjeverne Bosne, između sela Grebnice i Domaljevac. Danas u ovom području više nema poljskog brijestra jer je uništen Holandskom bolesti. Holandska bolest brijestra otkrivena je 1918. godine u zapadnoj Europi. Godinu dana kasnije otkrivena je u Holandiji, gdje je počinila štete jakih razmjera i detaljno je proučavana, odakle je bolest i dobila ime. Gljive napadaju stabla i grane brijestova bez obzira na dob. To je tipična traheomikoza, jer se gljive razvijaju u provodnim elementima (trahejama) brijestra. Glijove razvijaju stanice slične kvascima koje se množe i šire stvarajući toksin koji stimulira razvoj tila koje djelomično zatvaraju traheje. Zbog toga je onemogućen protok biljnih sokova, a kao posljedica javlja se većke, zatim sušenje grana ili cijelog stabla. Zbog činjenice da danas u područjima oko Hrvatske i Bosanske posavine više nema poljskog brijestra, ovo ispitivanje ima važno značenje.

Ispitivanje je podijeljeno na tri dijela. U prvom dijelu 33 uzorka nazivnih dimenzija 6x6x80 mm materijala subfosilnog brijestra opterećeno je okomito na smjer godova, tj. u radijalnom presjeku (kut sile i uzorka 90°). U drugom dijelu 33 uzorka nazivnih dimenzija 6x6x80 mm opterećeno je silom paralelnom s godovima (kut 0°), tj. u tangencijalnom presjeku. U trećem dijelu 33 uzorka nazivnih dimenzija 6x6x80 mm opterećeno je tako da je kut između vlakanaca i sile iznosio 45°. Ukupno 99 uzoraka, u svakoj seriji po 33 uzorka.

Slika 25.a) lokacija pronalaska subfosilnog brijestra, b) prikaz riječnog tok i nalazišta u njemu
7. Istraživačke metode

U ovom poglavlju detaljno su objašnjene metode ispitivanja, obrade i načina dobivanja rezultata. Metode koje su korištene tijekom ispitivanja su metode određivanja starosti uzorka, analiza mikrostruktura, statističke metode obrade rezultata mjerenja. Svaka metoda predstavlja uvid u ponašanje materijala ovisno o strukturi, greškama, porozitetu i udjelu vode. Konzervirani uzorak poljskog brijesta uspoređen je u svim poglavljima s vrijednostima iz domaće literature za istu vrstu brijesta. Na temelju dobivenih rezultata doneseni su zaključci o samoj strukturi, mehaničkim svojstvima te usmjerenosti strukture. U okviru planiranog istraživanja provedena su sljedeća ispitivanja:

- određivanje starosti metodom radioaktivnog izotopa ugljika C14
- analiza mikrostruktura u poprečnom, radijalnom i tangencijalnom presjeku
- određivanje savojne čvrstoće i savojnog modula elastičnosti
- određivanje gustoće i udjela vlage u drvu pri ispitivanju

7.1 Određivanje starosti

Starost debla brijesta iz kojeg su izrezani uzorci određena je na Institutu Ruđer Bošković metodom radioaktivnog izotopa ugljika, ^{14}C. Osnovna ideja metode određivanja starosti radioaktivnim ugljikom ^{14}C zasniva se na činjenici da je sav organski materijal u biosferi "obilježen" radioaktivnim izotopom ^{14}C, te da je koncentracija ^{14}C u živom organizmu stalna jer je stalnom izmjenom tvari uspostavljena ravnoteža između gubitka uslijed radioaktivnog raspada i unosa novih ^{14}C atoma. Nakon smrti organizma, odnosno nakon prestanka izmjene tvari, prestaje nadoknađivanje ^{14}C, te se njegova koncentracija smanjuje prema zakonu radioaktivnog raspada. Mjerenjem preostale aktivnosti ^{14}C u nekom materijalu organskog porijekla može se prema tome odrediti koliko je vremena proteklo od časa kad je nastupila smrt, tj. kad je prestala izmjena tvari. Vrijeme poluraspada ^{14}C izotopa je 5730 godina, što znači da se tijekom toliko godina broj radioaktivnih izotopa ^{14}C u nekom materijalu smanji na polovicu početne vrijednosti. U tablici 7. Prikazana je oznaka uzorka i procijenjena starost.

Tablica 7. Opći podaci o uzorku i određene starosti

<table>
<thead>
<tr>
<th>lab broj/oznaka</th>
<th>naziv uzorka</th>
<th>konvencijska ^{14}C starost(BP)</th>
<th>kalibrirana starost(cal BC/AD)</th>
<th>medijan(cal BC/AD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-6047 B1331</td>
<td>Drvo – abanos iz rijeke Save</td>
<td>670 ± 50</td>
<td>1276 – 1315 cal AD (37,5 %) 1356 – 1389 cal AD (30,7 %)</td>
<td>1321 cal AD</td>
</tr>
</tbody>
</table>
Konvencijska 14C starost je apsolutna starost u godinama računana „od sadašnjosti“ (BP – before present), a kao relevantna godina uzima se 1950. Rezultat je izračunat uz konvencijski usvojeno vrijeme. Zaokruživanje zadnjih vremena poluraspada izotopa 14C od 5570 godina, s pogreškom od jedne znamenke u skladu je s preporukama časopisa RADIOCARBON; 14C AMS mjerenja rade se u suradnji sa Center for Applied Isotope Studies, University of Georgia, SAD. Za novija ispitivanja rezultat se izražava u jedinicama pMC – postotak modernog ugljika.

Kalibrirana starost je starost izražena u povijesnim godinama (cal AD/BC), određena na osnovi dendrokrontološke kalibracijske krivulje IntCal13 programom OxCal v4.2.4, https://c14.arch.ox.ac.uk/. Na grafičkom prikazu kalibracije (slika 2.6.) dani su i intervalli starosti uz odgovarajuće vjerojatnosti.

Slika 2.6. Dijagram starost

Na slici 22. uočavamo da je sa intervalom vjerodostojnosti od 68,2 % određeno starosno razdoblje od 1276 do 1315. AD ili 1356 do 1389 AD. S intervalom vjerodostojnosti od 95,4% određeno je starosno razdoblje od 1263 do 1400 AD. Važnost starosti uzorka daje nam predodžbu koliki efekt fosilizacije, mineralizacije te konzervacije je postignut. Starost od oko 600 godina, aheološki je zanemariva, jer je srednji vijek relativno mlado arheološko razdoblje.
7.2 Analiza mikrostrukture

Mikrostruktura subfosilnog uzorka poljskog brijesta promatrana je pod svjetlosnim mikroskopom OLYMPUS BX 51-P u Laboratoriju za nemetale Fakulteta strojarstva i brodogradnje u Zagrebu. Analizom u tri karakteristična presjeka uočen je raspored pora, traheja i traheida (vlakanaca) te njihova zbijenost. Greške u strukturi također su promatrane te se dovode u konkretnu vezu s mehaničkim svojstvima mjerenim na istom presjeku. Iz uzorka dimenzija 20x30x40 mm izrezani su listići debljine 1 mm. Na slici 27. prikazan je nož za rezanje uzoraka za mikroskopiranje.

Slika 27. Prikaz noža za rezanje drvnih uzoraka

Rotacijom uzorka dobili smo listiće u tri različita presjeka, radijalni, tangencijalni i poprečni. Na slici 23. uočava se struktura i usmjerenost godova koji označavaju godišnji prirast drva. Vizualnim metodama jednostavno se određuje broj godova.
Slika 28. Prikaz površine uzorka prije rezanja i mikroskopiranja

Slijedeće slike (29, 30 i 31) prikazuju mikrostrukturu promatranu na svjetlosnom mikroskopom pri povećanju 120 x 60. Slike su u izvornoj veličini kako bi neki elementi drvne strukture bili lakše uočljiviji i zapaženiji.

Slika 29. Tangencijalni presjek u mjerilu 1mm
Slika 30. Radijalni presjek u mjerilu 1mm

Slika 31. Poprečni presjek u mjerilu 1mm

Na slici 29. vidi se usmjerenost vlakanaca u okomitom smjeru. Crne mrlje u mikrostrukturni rezultat su grešaka koje se pojavljuju s godišnjim prirastom (kvrge, izbočine, nakupine tkiva i traheja). Svjetlo obojena područja prikazuju pore u strukturi. Tanke isprepletene cjevčice dio su parenhima te umrežuju i povezuju ostale centre u strukturi.
Na radijalnom presjeku (slika 30.) uočava se veći porozitet (bijelo) te osrženi sekundarni ksilem (crno). Tanke linije nakupine su drvnih stanica koje tvore provodno tkivo te su usmjerene.

Poprečni presjek (slika 31.) daje uvid u stvarnu veličinu pora. Uočavamo liniju većih pora u sredini presjeka koje pripadaju ranom drvu. Pore u kasnom dijelu drva su manje i sadrže veće grupacije.

7.3. Ispitivanje savojne čvrstoće i savojnog modula elastičnosti

Ispitivanje savojne čvrstoće i modula elastičnosti provedeno je na uzorcima dimenzija 6x6x80 mm metodom savijanja u jednoj točci na kidalici Messphysik BETA 50-5. Ispitivanja su se vršila u tri grupe, od čega je svaka grupa imala 32 uzorka. Uzorci su opterećivani do loma. Prije samog ispitivanja izmjerene su dimenzije poprečnog presjeka uzorka, atijekom ispitivanja bilježila se savojna sila i progib ispitnog uzorka. Razmak između oslonaca bio je 74 mm. Promjer valjka kojim je opterećivana ispitna proba bio je 10 mm. Progib drvene grede mjeren je pomoću video ekstenzometra (ME 46, Messphysik) te je korišteno opterećenje od 6,3 KN i konstantna brzina opterećenja od 2,8 mm/min. Ispitivanja su provedena u Laboratoriju za eksperimentalnu mehaniku, Fakulteta strojarstva i brodogradnje u Zagrebu. Temperatura okoline za vrijeme mjerenja bila je 22°C, a relativna vlažnost zraka 48 %. Na slici 32. prikazan je izgled ekstenzometarske kidalice.

Slika 32. Kidalica u laboratoriju za eksperimentalnu mehaniku
Na slici 33. prikazani su uzorci prije ispitivanja, a na slici 30 je prikazan uzorak na kidalici neposredno pred ispitivanje savojne čvrstoće.

Slika 33. Prikaz uzoraka subfossilnog brijsta prije ispitivanja

Slika 34. Prikaz uzoraka na kidalici
Slika 35. Prikaz uzoraka nakon ispitivanja

Orijentacija uzoraka (slika 36) koja je objašnjena u teorijskom dijelu ovdje je najvažniji parametar ispitivanja. Pojašnjen je način izrezivanja uzoraka i dobivanje orijentacije ovisno o presjeku. Prema slici 37 oznaka LR je skraćenica od longitudinalno-radijalnog presjeka, LT od longitudinalno tangencijalnog i L45° gdje su godovi izrezani pod kutem od 45° u odnosu na uzdužnu os.

Slika 36. Položaji rezanja uzoraka
Slika 37. Načini djelovanja sile s obzirom na smjer godova

Svaka serija uzoraka bit će obrađena u zasebnom poglavlju kako bi se osigurala sljedivost rezultata i metoda ispitivanja.

7.3.1 Ispitivanje prve serije uzoraka okomito na godove - LR

Kut između smjera godova i sile je 90°. Ova serija uzoraka ima oznaku LR. Prva serija uzoraka uključuje uzorke oznake A, B i C. Oznake tiskanim stilovima ukazuju na presjek rezanja, a brojne oznake na prostornu poziciju (slika 38).

![Slika 39. Prikaz presjeka rezanja i prostorne pozicije](image)

U sljedećim tablicama i dijagramima prikazani su rezultati ispitivanja. Oznake u tablicama i slikama su prikazani legendom u tablici 8.
Tablica 8. Oznake veličina i mjernih jedinica

<table>
<thead>
<tr>
<th>OZNAKA VELIČINE</th>
<th>NAZIV VELIČINE</th>
<th>MJERNA JEDINICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test no</td>
<td>redni broj ispitivanja</td>
<td>-</td>
</tr>
<tr>
<td>BNo</td>
<td>serija ispitivanja</td>
<td>-</td>
</tr>
<tr>
<td>Fmax</td>
<td>maksimalna sila</td>
<td>N</td>
</tr>
<tr>
<td>σ_{FM}</td>
<td>savojna čvrstoća</td>
<td>MPa</td>
</tr>
<tr>
<td>Smax</td>
<td>maksimalni progib grede</td>
<td>mm</td>
</tr>
<tr>
<td>Ef</td>
<td>modul elastičnosti</td>
<td>GPa</td>
</tr>
<tr>
<td>dFM</td>
<td>prosječni progib grede</td>
<td>mm</td>
</tr>
<tr>
<td>ε_{FM}</td>
<td>istezljivost</td>
<td>%</td>
</tr>
<tr>
<td>Mean</td>
<td>aritmetička sredina</td>
<td>-</td>
</tr>
<tr>
<td>Std.dev</td>
<td>standarno odstupanje</td>
<td>-</td>
</tr>
</tbody>
</table>

U tablici 9. prikazani su rezultati ispitivanja za 11 uzoraka iz prve serije, gdje je savojna sila opterećivala ispitni uzorak okomito na vlakanca i okomito (pod kutom od 90°) na godove – LR. U tablica 10. i 11. prikazani su rezultati za preostala 22 ispitna uzorka iz ove serije.
Tablica 9. Rezultati ispitivanja za prvih 11 uzoraka iz serije LR

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>Fmax N</th>
<th>σfM MPa</th>
<th>smax mm</th>
<th>Ef GPa</th>
<th>dFM mm</th>
<th>εfM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>A1</td>
<td>143.3</td>
<td>66.30</td>
<td>3.433</td>
<td>5.542</td>
<td>2.888</td>
<td>1.965</td>
</tr>
<tr>
<td>37</td>
<td>A2</td>
<td>153.7</td>
<td>70.58</td>
<td>3.396</td>
<td>6.500</td>
<td>2.979</td>
<td>2.011</td>
</tr>
<tr>
<td>38</td>
<td>A3</td>
<td>176.5</td>
<td>80.63</td>
<td>3.639</td>
<td>7.680</td>
<td>3.086</td>
<td>2.106</td>
</tr>
<tr>
<td>39</td>
<td>A4</td>
<td>194.1</td>
<td>100.9</td>
<td>3.793</td>
<td>8.987</td>
<td>3.343</td>
<td>2.168</td>
</tr>
<tr>
<td>40</td>
<td>A5</td>
<td>220.4</td>
<td>99.41</td>
<td>3.903</td>
<td>7.940</td>
<td>3.402</td>
<td>2.341</td>
</tr>
<tr>
<td>41</td>
<td>A6</td>
<td>197.6</td>
<td>90.42</td>
<td>3.486</td>
<td>8.023</td>
<td>3.195</td>
<td>2.191</td>
</tr>
<tr>
<td>42</td>
<td>A7</td>
<td>212.5</td>
<td>99.62</td>
<td>3.461</td>
<td>8.777</td>
<td>3.022</td>
<td>2.050</td>
</tr>
<tr>
<td>43</td>
<td>A8</td>
<td>199.2</td>
<td>94.44</td>
<td>3.763</td>
<td>7.955</td>
<td>3.380</td>
<td>2.300</td>
</tr>
<tr>
<td>44</td>
<td>A9</td>
<td>200.7</td>
<td>96.72</td>
<td>3.961</td>
<td>7.719</td>
<td>3.463</td>
<td>2.326</td>
</tr>
<tr>
<td>45</td>
<td>A10</td>
<td>177.9</td>
<td>85.32</td>
<td>3.436</td>
<td>8.117</td>
<td>2.922</td>
<td>1.953</td>
</tr>
<tr>
<td>46</td>
<td>A11</td>
<td>154.3</td>
<td>73.87</td>
<td>3.103</td>
<td>6.701</td>
<td>2.667</td>
<td>1.779</td>
</tr>
</tbody>
</table>

Mean: 184.6, Std.dev.: 25.46

Slika 40. Dijagram naprezanje-progib za prvih 11 uzoraka iz serije LR
Tablica 10. Rezultati ispitivanja za drugih 11 uzoraka iz serije LR

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>F_{max} N</th>
<th>n_{FM} MPa</th>
<th>s_{max} mm</th>
<th>E_f GPa</th>
<th>d_{FM} mm</th>
<th>n_{FM} %</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>B1</td>
<td>133.4</td>
<td>74.76</td>
<td>3.836</td>
<td>6.071</td>
<td>3.437</td>
<td>2.139</td>
</tr>
<tr>
<td>48</td>
<td>B2</td>
<td>158.6</td>
<td>76.84</td>
<td>3.709</td>
<td>5.903</td>
<td>3.306</td>
<td>2.242</td>
</tr>
<tr>
<td>49</td>
<td>B3</td>
<td>161.6</td>
<td>79.67</td>
<td>3.612</td>
<td>6.977</td>
<td>3.223</td>
<td>2.154</td>
</tr>
<tr>
<td>50</td>
<td>B4</td>
<td>170.7</td>
<td>88.03</td>
<td>3.680</td>
<td>7.571</td>
<td>3.289</td>
<td>2.158</td>
</tr>
<tr>
<td>51</td>
<td>B5</td>
<td>178.2</td>
<td>94.55</td>
<td>4.010</td>
<td>7.882</td>
<td>3.657</td>
<td>2.360</td>
</tr>
<tr>
<td>52</td>
<td>B6</td>
<td>183.7</td>
<td>97.52</td>
<td>3.368</td>
<td>8.556</td>
<td>3.015</td>
<td>1.929</td>
</tr>
<tr>
<td>53</td>
<td>B7</td>
<td>224.6</td>
<td>112.2</td>
<td>3.934</td>
<td>9.604</td>
<td>3.464</td>
<td>2.307</td>
</tr>
<tr>
<td>54</td>
<td>B8</td>
<td>190.7</td>
<td>96.07</td>
<td>3.523</td>
<td>8.605</td>
<td>3.112</td>
<td>2.053</td>
</tr>
<tr>
<td>55</td>
<td>B9</td>
<td>180.3</td>
<td>94.53</td>
<td>3.261</td>
<td>8.435</td>
<td>2.816</td>
<td>1.842</td>
</tr>
<tr>
<td>56</td>
<td>B10</td>
<td>167.5</td>
<td>90.52</td>
<td>3.350</td>
<td>7.854</td>
<td>2.840</td>
<td>1.839</td>
</tr>
<tr>
<td>57</td>
<td>B11</td>
<td>171.3</td>
<td>88.46</td>
<td>3.042</td>
<td>8.576</td>
<td>2.686</td>
<td>1.763</td>
</tr>
</tbody>
</table>

Mean: 174.6, 90.29, 3.575, 7.821, 3.168, 2.071
Std.dev.: 22.55, 10.70, 0.299, 1.131, 0.304, 0.202

Slika 41. Dijagram naprezanje-progib za drugih 11 uzoraka iz serije LR
Tablica 11. Rezultati ispitivanja za zadnjih 11 uzoraka iz serije LR

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>Fmax N</th>
<th>σM N</th>
<th>smax mm</th>
<th>Ef GPa</th>
<th>dFM mm</th>
<th>efM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>C1</td>
<td>141.7</td>
<td>65.69</td>
<td>3.584</td>
<td>5.353</td>
<td>3.216</td>
<td>2.189</td>
</tr>
<tr>
<td>59</td>
<td>C2</td>
<td>155.1</td>
<td>78.94</td>
<td>3.507</td>
<td>6.030</td>
<td>3.232</td>
<td>2.107</td>
</tr>
<tr>
<td>60</td>
<td>C3</td>
<td>155.7</td>
<td>82.20</td>
<td>3.950</td>
<td>6.477</td>
<td>3.665</td>
<td>2.357</td>
</tr>
<tr>
<td>61</td>
<td>C4</td>
<td>155.0</td>
<td>81.12</td>
<td>3.901</td>
<td>6.772</td>
<td>3.456</td>
<td>2.272</td>
</tr>
<tr>
<td>62</td>
<td>C5</td>
<td>184.5</td>
<td>92.35</td>
<td>3.748</td>
<td>8.019</td>
<td>3.291</td>
<td>2.196</td>
</tr>
<tr>
<td>63</td>
<td>C6</td>
<td>196.3</td>
<td>93.85</td>
<td>3.502</td>
<td>8.171</td>
<td>3.064</td>
<td>2.055</td>
</tr>
<tr>
<td>64</td>
<td>C7</td>
<td>225.1</td>
<td>109.5</td>
<td>3.761</td>
<td>8.332</td>
<td>3.360</td>
<td>2.253</td>
</tr>
<tr>
<td>65</td>
<td>C8</td>
<td>210.0</td>
<td>103.9</td>
<td>3.656</td>
<td>8.621</td>
<td>3.184</td>
<td>2.100</td>
</tr>
<tr>
<td>66</td>
<td>C9</td>
<td>212.9</td>
<td>104.1</td>
<td>3.457</td>
<td>9.237</td>
<td>3.048</td>
<td>2.040</td>
</tr>
<tr>
<td>67</td>
<td>C10</td>
<td>193.8</td>
<td>90.13</td>
<td>3.346</td>
<td>7.609</td>
<td>2.837</td>
<td>1.942</td>
</tr>
<tr>
<td>68</td>
<td>C11</td>
<td>202.3</td>
<td>95.12</td>
<td>3.606</td>
<td>8.209</td>
<td>3.060</td>
<td>2.068</td>
</tr>
</tbody>
</table>

Mean: 184.8, 90.63, 3.638, 7.530, 3.219, 2.144
Std.dev.: 28.36, 12.91, 0.188, 1.208, 0.225, 0.121

Slika 42. Dijagram naprezanje-progib za zadnjih 11 uzoraka iz serije LR

7.3.2 Ispitivanje druge serije uzoraka paralelno s godovima - LT

U ovoj seriji uzorci su orijentirani tako da je smjer sile okomit na vlakanca, a paralelan sa smjerom godova. Zbog zakrivljenosti godova smjer sile zapravo tangira linije goda. Kut između sile i smjera godova je oko 0° i ova serija nosi oznaku LT. U ovoj seriji ispitujemo 33 uzorka kako bismo mogli odrediti statističke parametre i vrstu razdiobe kao i u prethodnoj seriji. Uzorci su označeni slovima D, F i G te svaki sadrži 11 ispitnih epruveta.
Tablica 12. Rezultati ispitivanja za prvih 11 uzoraka iz serije LT

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>Fmax N</th>
<th>σfM MPa</th>
<th>smax mm</th>
<th>Ef GPa</th>
<th>dFM mm</th>
<th>εfM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D1</td>
<td>126.8</td>
<td>71.40</td>
<td>2.975</td>
<td>5.955</td>
<td>2.815</td>
<td>1.798</td>
</tr>
<tr>
<td>4</td>
<td>D2</td>
<td>146.7</td>
<td>76.51</td>
<td>3.121</td>
<td>6.456</td>
<td>2.837</td>
<td>1.850</td>
</tr>
<tr>
<td>5</td>
<td>D3</td>
<td>164.8</td>
<td>85.86</td>
<td>4.031</td>
<td>6.363</td>
<td>3.751</td>
<td>2.433</td>
</tr>
<tr>
<td>6</td>
<td>D4</td>
<td>147.8</td>
<td>69.05</td>
<td>3.037</td>
<td>5.632</td>
<td>2.693</td>
<td>1.835</td>
</tr>
<tr>
<td>7</td>
<td>D5</td>
<td>150.5</td>
<td>73.46</td>
<td>4.170</td>
<td>5.949</td>
<td>3.724</td>
<td>2.497</td>
</tr>
<tr>
<td>8</td>
<td>D6</td>
<td>182.8</td>
<td>91.64</td>
<td>4.255</td>
<td>6.624</td>
<td>3.893</td>
<td>2.585</td>
</tr>
<tr>
<td>9</td>
<td>D7</td>
<td>180.2</td>
<td>100.5</td>
<td>3.348</td>
<td>8.683</td>
<td>3.033</td>
<td>1.914</td>
</tr>
<tr>
<td>10</td>
<td>D8</td>
<td>214.5</td>
<td>103.9</td>
<td>3.905</td>
<td>8.225</td>
<td>3.456</td>
<td>2.348</td>
</tr>
<tr>
<td>11</td>
<td>D9</td>
<td>187.5</td>
<td>92.76</td>
<td>2.714</td>
<td>8.617</td>
<td>2.440</td>
<td>1.612</td>
</tr>
<tr>
<td>12</td>
<td>D10</td>
<td>199.6</td>
<td>106.4</td>
<td>3.016</td>
<td>9.694</td>
<td>2.673</td>
<td>1.719</td>
</tr>
<tr>
<td>Mean:</td>
<td></td>
<td>173.1</td>
<td>87.95</td>
<td>3.462</td>
<td>7.316</td>
<td>3.131</td>
<td>2.060</td>
</tr>
<tr>
<td>Std.dev.:</td>
<td></td>
<td>27.77</td>
<td>13.53</td>
<td>0.544</td>
<td>1.468</td>
<td>0.500</td>
<td>0.345</td>
</tr>
</tbody>
</table>

U tablicama 12, 13 i 14 dati su rezultat dobiveni pri ispitivanju savojne čvrstoće i savojnog modula elastičnosti za uzorke iz serije LT (0°). Na slikama 43, 44 i 45. prikazane su krivulje naprezanje-progib za sve uzorke iz serije LT (0°). I ovdje je prisutno dosta veliko rasipanje vrijednosti savojne čvrstoće i savojnog modula elastičnosti.

Slika 43. Dijagram naprezanje-progib za prvih 11 uzoraka iz serije LT
Antun Balaton

Tablica 13. Rezultati ispitivanja za drugih 11 uzoraka iz serije LT

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>Fmax N</th>
<th>σfM MPa</th>
<th>σmax mm</th>
<th>Ef GPa</th>
<th>dFM mm</th>
<th>εfM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>F1</td>
<td>150.0</td>
<td>77.05</td>
<td>3.475</td>
<td>6.243</td>
<td>3.211</td>
<td>2.073</td>
</tr>
<tr>
<td>15</td>
<td>F2</td>
<td>166.5</td>
<td>81.69</td>
<td>3.404</td>
<td>7.422</td>
<td>3.128</td>
<td>2.094</td>
</tr>
<tr>
<td>16</td>
<td>F3</td>
<td>159.0</td>
<td>89.89</td>
<td>3.747</td>
<td>7.427</td>
<td>3.486</td>
<td>2.196</td>
</tr>
<tr>
<td>17</td>
<td>F4</td>
<td>131.6</td>
<td>73.16</td>
<td>3.622</td>
<td>5.339</td>
<td>3.284</td>
<td>2.141</td>
</tr>
<tr>
<td>18</td>
<td>F5</td>
<td>144.4</td>
<td>86.28</td>
<td>3.629</td>
<td>6.902</td>
<td>3.364</td>
<td>2.079</td>
</tr>
<tr>
<td>19</td>
<td>F6</td>
<td>154.5</td>
<td>84.53</td>
<td>3.192</td>
<td>7.642</td>
<td>2.857</td>
<td>1.831</td>
</tr>
<tr>
<td>20</td>
<td>F7</td>
<td>202.8</td>
<td>93.49</td>
<td>4.137</td>
<td>7.016</td>
<td>3.724</td>
<td>2.583</td>
</tr>
<tr>
<td>21</td>
<td>F8</td>
<td>192.3</td>
<td>94.50</td>
<td>3.085</td>
<td>9.007</td>
<td>2.809</td>
<td>1.859</td>
</tr>
<tr>
<td>22</td>
<td>F9</td>
<td>181.0</td>
<td>89.91</td>
<td>2.842</td>
<td>7.544</td>
<td>2.583</td>
<td>1.746</td>
</tr>
<tr>
<td>23</td>
<td>F10</td>
<td>197.3</td>
<td>93.67</td>
<td>2.690</td>
<td>8.794</td>
<td>2.322</td>
<td>1.600</td>
</tr>
<tr>
<td>24</td>
<td>F11</td>
<td>176.9</td>
<td>93.87</td>
<td>3.771</td>
<td>8.451</td>
<td>3.386</td>
<td>2.219</td>
</tr>
</tbody>
</table>

Mean: 168.8 87.09 3.418 7.435 3.105 2.038
Std.dev.: 23.18 7.295 0.432 1.081 0.419 0.269

Slika 44. Dijagram naprezanje-progib za drugih 11 uzoraka iz serije LT
Tablica 14. Rezultati ispitivanja za zadnjih 11 uzoraka iz serije LT

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>F_{max} N</th>
<th>σ_fM MPa</th>
<th>s_{max} mm</th>
<th>E_f GPa</th>
<th>d_fM mm</th>
<th>σ_fM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>G1</td>
<td>142.0</td>
<td>80.38</td>
<td>3.645</td>
<td>6.455</td>
<td>3.323</td>
<td>2.064</td>
</tr>
<tr>
<td>26</td>
<td>G2</td>
<td>146.1</td>
<td>80.84</td>
<td>3.633</td>
<td>6.726</td>
<td>3.283</td>
<td>2.108</td>
</tr>
<tr>
<td>27</td>
<td>G3</td>
<td>141.2</td>
<td>77.91</td>
<td>3.838</td>
<td>6.421</td>
<td>3.423</td>
<td>2.228</td>
</tr>
<tr>
<td>28</td>
<td>G4</td>
<td>166.4</td>
<td>86.50</td>
<td>3.459</td>
<td>7.254</td>
<td>3.228</td>
<td>2.104</td>
</tr>
<tr>
<td>29</td>
<td>G5</td>
<td>145.2</td>
<td>87.36</td>
<td>3.446</td>
<td>7.231</td>
<td>3.242</td>
<td>2.071</td>
</tr>
<tr>
<td>30</td>
<td>G6</td>
<td>187.1</td>
<td>94.55</td>
<td>3.318</td>
<td>7.427</td>
<td>3.170</td>
<td>2.108</td>
</tr>
<tr>
<td>31</td>
<td>G7</td>
<td>184.4</td>
<td>101.7</td>
<td>3.271</td>
<td>8.448</td>
<td>3.071</td>
<td>1.975</td>
</tr>
<tr>
<td>32</td>
<td>G8</td>
<td>159.9</td>
<td>95.84</td>
<td>3.193</td>
<td>8.184</td>
<td>2.968</td>
<td>1.860</td>
</tr>
<tr>
<td>33</td>
<td>G9</td>
<td>145.5</td>
<td>88.78</td>
<td>3.672</td>
<td>7.791</td>
<td>3.507</td>
<td>2.109</td>
</tr>
<tr>
<td>34</td>
<td>G10</td>
<td>165.7</td>
<td>97.01</td>
<td>3.427</td>
<td>7.984</td>
<td>3.127</td>
<td>2.066</td>
</tr>
<tr>
<td>35</td>
<td>G11</td>
<td>169.6</td>
<td>89.38</td>
<td>3.744</td>
<td>7.512</td>
<td>3.373</td>
<td>2.214</td>
</tr>
</tbody>
</table>

Mean:
$\bar{F}_{\text{max}} = 162.1$ N
$\bar{s}_{\text{max}} = 89.11$ mm
$\bar{\sigma}_fM = 3.513$ MPa
$\bar{E}_f = 7.403$ GPa
$\bar{d}_fM = 3.247$ mm
$\bar{\sigma}_fM = 2.082$ %

Std. dev.:
$\sigma_{F_{\text{max}}} = 18.56$ N
$\sigma_{s_{\text{max}}} = 7.589$ mm
$\sigma_{\sigma_fM} = 0.207$ MPa
$\sigma_{E_f} = 0.676$ GPa
$\sigma_{d_fM} = 0.158$ mm
$\sigma_{\sigma_fM} = 0.101$ %

Slika 45. Dijagram naprezanje-progib za zadnjih 11 uzoraka iz serije LT
7.3.3 Ispitivanje treće serije uzoraka pod kutom od 45° u odnosu na tijek godova – L45°

Tablica 15. Rezultati ispitivanja za prvih 11 uzoraka iz serije L45°

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>Fmax</th>
<th>σfM</th>
<th>smax</th>
<th>Ef</th>
<th>dFM</th>
<th>εfM</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>1X</td>
<td>243.1</td>
<td>112.0</td>
<td>4.042</td>
<td>10.98</td>
<td>3.217</td>
<td>2.799</td>
</tr>
<tr>
<td>70</td>
<td>2X</td>
<td>268.4</td>
<td>122.6</td>
<td>4.090</td>
<td>11.78</td>
<td>3.376</td>
<td>2.761</td>
</tr>
<tr>
<td>71</td>
<td>3X</td>
<td>248.3</td>
<td>115.1</td>
<td>4.674</td>
<td>10.19</td>
<td>3.811</td>
<td>3.216</td>
</tr>
<tr>
<td>72</td>
<td>4X</td>
<td>199.0</td>
<td>91.67</td>
<td>3.092</td>
<td>8.412</td>
<td>2.474</td>
<td>2.162</td>
</tr>
<tr>
<td>73</td>
<td>5X</td>
<td>219.5</td>
<td>103.1</td>
<td>4.054</td>
<td>9.979</td>
<td>3.270</td>
<td>2.750</td>
</tr>
<tr>
<td>74</td>
<td>6X</td>
<td>191.3</td>
<td>95.58</td>
<td>3.703</td>
<td>7.934</td>
<td>3.163</td>
<td>2.463</td>
</tr>
<tr>
<td>75</td>
<td>7X</td>
<td>207.4</td>
<td>112.0</td>
<td>3.841</td>
<td>10.69</td>
<td>3.293</td>
<td>2.445</td>
</tr>
<tr>
<td>76</td>
<td>8X</td>
<td>194.1</td>
<td>103.7</td>
<td>3.812</td>
<td>9.633</td>
<td>3.238</td>
<td>2.452</td>
</tr>
<tr>
<td>77</td>
<td>9X</td>
<td>183.8</td>
<td>99.02</td>
<td>4.046</td>
<td>9.193</td>
<td>3.502</td>
<td>2.589</td>
</tr>
<tr>
<td>78</td>
<td>10X</td>
<td>152.6</td>
<td>82.48</td>
<td>4.013</td>
<td>7.363</td>
<td>3.455</td>
<td>2.594</td>
</tr>
<tr>
<td>79</td>
<td>11X</td>
<td>179.7</td>
<td>88.45</td>
<td>4.028</td>
<td>8.289</td>
<td>3.417</td>
<td>2.595</td>
</tr>
</tbody>
</table>

Mean: 205.8 103.2 3.945 9.486 3.296 2.621
Std.dev.: 32.13 11.55 0.378 1.386 0.326 0.268

Slika 46. Dijagram naprezanje-progib za prvih 11 uzoraka iz serije L45°
Tablica 16. Rezultati ispitivanja za drugih 11 uzoraka iz serije L45°

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>Fmax N</th>
<th>σfM MPa</th>
<th>smax mm</th>
<th>Ef GPA</th>
<th>σfM mm</th>
<th>σfM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1Y</td>
<td>216.2</td>
<td>113.0</td>
<td>4.020</td>
<td>11.38</td>
<td>3.400</td>
<td>2.634</td>
</tr>
<tr>
<td>81</td>
<td>2Y</td>
<td>193.0</td>
<td>100.4</td>
<td>4.105</td>
<td>7.637</td>
<td>3.580</td>
<td>2.858</td>
</tr>
<tr>
<td>82</td>
<td>3Y</td>
<td>216.9</td>
<td>109.3</td>
<td>3.491</td>
<td>10.85</td>
<td>2.756</td>
<td>2.333</td>
</tr>
<tr>
<td>83</td>
<td>4Y</td>
<td>190.3</td>
<td>103.6</td>
<td>3.891</td>
<td>8.959</td>
<td>3.423</td>
<td>2.474</td>
</tr>
<tr>
<td>84</td>
<td>5Y</td>
<td>187.4</td>
<td>96.46</td>
<td>3.897</td>
<td>9.329</td>
<td>3.294</td>
<td>2.550</td>
</tr>
<tr>
<td>85</td>
<td>6Y</td>
<td>191.5</td>
<td>104.9</td>
<td>3.971</td>
<td>10.07</td>
<td>3.351</td>
<td>2.532</td>
</tr>
<tr>
<td>86</td>
<td>7Y</td>
<td>183.1</td>
<td>101.2</td>
<td>3.442</td>
<td>9.005</td>
<td>3.001</td>
<td>2.206</td>
</tr>
<tr>
<td>87</td>
<td>8Y</td>
<td>271.5</td>
<td>141.4</td>
<td>3.671</td>
<td>10.61</td>
<td>3.471</td>
<td>2.397</td>
</tr>
<tr>
<td>88</td>
<td>9Y</td>
<td>212.3</td>
<td>106.6</td>
<td>4.321</td>
<td>7.649</td>
<td>3.859</td>
<td>2.855</td>
</tr>
<tr>
<td>89</td>
<td>10Y</td>
<td>165.5</td>
<td>87.28</td>
<td>4.318</td>
<td>7.730</td>
<td>3.519</td>
<td>2.867</td>
</tr>
<tr>
<td>90</td>
<td>11Y</td>
<td>164.3</td>
<td>121.2</td>
<td>4.123</td>
<td>12.31</td>
<td>3.472</td>
<td>2.300</td>
</tr>
</tbody>
</table>

Mean: 199.3 107.9 3.931 9.571 3.395 2.530
Std.dev.: 29.88 14.22 0.297 1.581 0.274 0.215

Slika 47. Dijagram naprezanje-progib za drugih 11 uzoraka iz serije L45°
Tablica 17. Rezultati ispitivanja za zadnjih 11 uzoraka iz serije L45°

<table>
<thead>
<tr>
<th>Test No</th>
<th>BNo</th>
<th>Fmax N</th>
<th>σfM MPa</th>
<th>σmax mm</th>
<th>Ef GPa</th>
<th>dFM mm</th>
<th>cffM %</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>1Z</td>
<td>230.4</td>
<td>105.3</td>
<td>3.907</td>
<td>9.277</td>
<td>3.194</td>
<td>2.654</td>
</tr>
<tr>
<td>92</td>
<td>2Z</td>
<td>214.1</td>
<td>107.1</td>
<td>3.537</td>
<td>10.27</td>
<td>2.681</td>
<td>2.341</td>
</tr>
<tr>
<td>93</td>
<td>3Z</td>
<td>241.3</td>
<td>113.5</td>
<td>4.044</td>
<td>9.288</td>
<td>3.376</td>
<td>2.730</td>
</tr>
<tr>
<td>94</td>
<td>4Z</td>
<td>220.8</td>
<td>105.9</td>
<td>3.654</td>
<td>10.39</td>
<td>3.131</td>
<td>2.465</td>
</tr>
<tr>
<td>95</td>
<td>5Z</td>
<td>227.9</td>
<td>106.4</td>
<td>4.399</td>
<td>8.474</td>
<td>3.705</td>
<td>3.012</td>
</tr>
<tr>
<td>96</td>
<td>6Z</td>
<td>237.2</td>
<td>118.3</td>
<td>4.510</td>
<td>11.20</td>
<td>3.747</td>
<td>2.965</td>
</tr>
<tr>
<td>97</td>
<td>7Z</td>
<td>203.4</td>
<td>102.0</td>
<td>3.770</td>
<td>9.115</td>
<td>3.294</td>
<td>2.474</td>
</tr>
<tr>
<td>98</td>
<td>8Z</td>
<td>190.4</td>
<td>99.64</td>
<td>3.613</td>
<td>8.677</td>
<td>3.168</td>
<td>2.352</td>
</tr>
<tr>
<td>99</td>
<td>9Z</td>
<td>205.0</td>
<td>109.8</td>
<td>4.421</td>
<td>9.954</td>
<td>3.841</td>
<td>2.819</td>
</tr>
<tr>
<td>100</td>
<td>10Z</td>
<td>187.1</td>
<td>94.59</td>
<td>4.368</td>
<td>7.775</td>
<td>3.673</td>
<td>2.870</td>
</tr>
<tr>
<td>101</td>
<td>11Z</td>
<td>185.7</td>
<td>91.41</td>
<td>4.183</td>
<td>7.248</td>
<td>3.590</td>
<td>2.727</td>
</tr>
<tr>
<td>102</td>
<td>12Z</td>
<td>167.6</td>
<td>81.56</td>
<td>4.342</td>
<td>7.054</td>
<td>3.602</td>
<td>2.857</td>
</tr>
<tr>
<td>103</td>
<td>13Z</td>
<td>173.7</td>
<td>92.32</td>
<td>4.089</td>
<td>8.160</td>
<td>3.499</td>
<td>2.642</td>
</tr>
<tr>
<td>104</td>
<td>14Z</td>
<td>163.4</td>
<td>86.00</td>
<td>4.621</td>
<td>6.379</td>
<td>4.033</td>
<td>2.972</td>
</tr>
</tbody>
</table>

Mean: 203.1 101.0 4.103 8.802 3.488 2.709
Std.dev.: 26.31 10.57 0.357 1.391 0.566 0.230

Slika 48. Dijagram naprezanje-progib za zadnjih 11 uzoraka iz serije L45°

7.4 Određivanje gustoće i udjela vlage u drvu pri ispitivanju

Neposredno nakon provedenog ispitivanja savojne čvrstoće i savojnog modula elastičnosti izmjerena je gustoća uzoraka i udio vlage pri ispitivanju prema normi ISO 13061[12]. Sadržaj vlage u uzorku, računan kao gubitak mase sušenjem do konstantne mase pri temperaturi 103±2°C, iznosio je 7,5%. Gustoća drva pri udjelu vlage od 7,5% iznosila je 0,5324 g/cm³. Također je određena gustoća drva u apsolutno suhom stanju i iznosila je 0,51829 g/cm³.
Na slici 49. prikazan je uzorak dimenzija 30×30×20 mm na kojem je određena gustoća i udio vlage u drvu.

Slika 49. Uzorak za ispitivanje gustoće

8. Analiza rezultata

U tablici 18 dat je pregled svih rezultata dobivenih ispitivanjem savojne čvrstoće i savojnog modula elastičnosti. Iz ove tablice je vidljivo da najviše vrijednosti savojne čvrstoća ima serija L45°, kod koje je smjer sile u odnosu na tijek godova bio pod 45°. Vrijednost savojne čvrstoće ove serije viša je za 19,6% u odnosu na LR seriju. Rezultati za serije LR i LT su dosta sljednji. Vrijednost savojne čvrstoće LT serije je neznatno viša (1,3%) od savojne čvrstoće LR serije.

Vrijednosti savojnog modula elastičnosti također su najviše kod serije L45°, a najniže kod serije LR. U odnosu na LR seriju modul elastičnosti L45° je 28,6% veći. Vrijednost modula elastičnosti serije LT viša je za 3,8% od serije LR.

Takav odnos vrijednosti za savojnu čvrstoću i savojni modul elastičnosti podudara se s literaturnim istraživanjima za Douglas fir [12] te s istraživanjima provedenim na Norway spruce [13]. Iz literature je poznato da odnos može biti drugačiji. Kod nekih vrsta nema razlike između vrijednosti za 0° i 90°, a neke vrste imaju višu vrijednost u LR orijentaciji [14].

Razlike u vrijednostima za savojnu čvrstoću i savojni modul elastičnosti posljedica su činjenice da je drvo anizotropan materijal. Poroznost drva i slojevite savojne građe, a osobito orijentacija drvnih trakova u odnosu na položaj godova utječu na vrijednosti mehaničkih svojstava [15]. Variabilnost savojne čvrstoće i savojnog modula elastičnosti opisana je Weibullohom distribucijom. Ova metoda je primjenjiva za procjenu pouzdanosti različitih mehaničkih svojstava, kod heterogenih materijala kod kojih se rezultati ispitivanja jako rasipaju.
<table>
<thead>
<tr>
<th>mjerene</th>
<th>Savojna čvrstoća (MPa)</th>
<th>Modul elastičnosti (GPa)</th>
<th>Savojna čvrstoća (MPa)</th>
<th>Modul elastičnosti (GPa)</th>
<th>Savojna čvrstoća (MPa)</th>
<th>Modul elastičnosti (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66,3</td>
<td>5,496</td>
<td>112,04</td>
<td>10,98</td>
<td>71,4</td>
<td>6,038</td>
</tr>
<tr>
<td>2</td>
<td>70,58</td>
<td>6,283</td>
<td>122,60</td>
<td>11,78</td>
<td>76,51</td>
<td>6,464</td>
</tr>
<tr>
<td>3</td>
<td>80,63</td>
<td>7,482</td>
<td>115,10</td>
<td>10,19</td>
<td>85,86</td>
<td>6,409</td>
</tr>
<tr>
<td>4</td>
<td>100,9</td>
<td>8,805</td>
<td>91,67</td>
<td>8,41</td>
<td>69,05</td>
<td>5,361</td>
</tr>
<tr>
<td>5</td>
<td>99,41</td>
<td>7,994</td>
<td>103,10</td>
<td>9,88</td>
<td>73,46</td>
<td>5,694</td>
</tr>
<tr>
<td>6</td>
<td>90,42</td>
<td>7,881</td>
<td>95,58</td>
<td>7,93</td>
<td>91,64</td>
<td>6,727</td>
</tr>
<tr>
<td>7</td>
<td>99,62</td>
<td>8,661</td>
<td>112,00</td>
<td>10,69</td>
<td>100,50</td>
<td>8,754</td>
</tr>
<tr>
<td>8</td>
<td>94,44</td>
<td>8,003</td>
<td>103,70</td>
<td>9,63</td>
<td>103,90</td>
<td>8,064</td>
</tr>
<tr>
<td>9</td>
<td>96,72</td>
<td>7,668</td>
<td>99,02</td>
<td>9,19</td>
<td>92,76</td>
<td>8,719</td>
</tr>
<tr>
<td>10</td>
<td>85,32</td>
<td>8,199</td>
<td>82,48</td>
<td>7,36</td>
<td>106,40</td>
<td>9,761</td>
</tr>
<tr>
<td>11</td>
<td>73,87</td>
<td>6,569</td>
<td>98,46</td>
<td>8,29</td>
<td>95,99</td>
<td>8,451</td>
</tr>
<tr>
<td>12</td>
<td>74,76</td>
<td>5,953</td>
<td>113,90</td>
<td>11,38</td>
<td>77,05</td>
<td>6,054</td>
</tr>
<tr>
<td>13</td>
<td>76,84</td>
<td>5,901</td>
<td>100,40</td>
<td>7,61</td>
<td>81,69</td>
<td>7,231</td>
</tr>
<tr>
<td>14</td>
<td>79,67</td>
<td>6,634</td>
<td>109,30</td>
<td>10,65</td>
<td>89,89</td>
<td>7,496</td>
</tr>
<tr>
<td>15</td>
<td>88,03</td>
<td>7,574</td>
<td>103,80</td>
<td>8,94</td>
<td>73,16</td>
<td>5,364</td>
</tr>
<tr>
<td>16</td>
<td>94,55</td>
<td>7,814</td>
<td>96,46</td>
<td>9,33</td>
<td>86,28</td>
<td>6,93</td>
</tr>
<tr>
<td>17</td>
<td>97,52</td>
<td>8,498</td>
<td>104,90</td>
<td>10,07</td>
<td>84,53</td>
<td>7,094</td>
</tr>
<tr>
<td>18</td>
<td>112,2</td>
<td>9,632</td>
<td>101,20</td>
<td>9,01</td>
<td>93,49</td>
<td>6,819</td>
</tr>
<tr>
<td>19</td>
<td>96,07</td>
<td>8,637</td>
<td>141,40</td>
<td>10,61</td>
<td>94,5</td>
<td>8,856</td>
</tr>
<tr>
<td>20</td>
<td>94,53</td>
<td>8,508</td>
<td>106,60</td>
<td>7,65</td>
<td>89,91</td>
<td>7,622</td>
</tr>
<tr>
<td>21</td>
<td>90,52</td>
<td>7,938</td>
<td>87,28</td>
<td>7,73</td>
<td>93,67</td>
<td>8,851</td>
</tr>
<tr>
<td>22</td>
<td>88,46</td>
<td>8,535</td>
<td>121,20</td>
<td>12,31</td>
<td>93,87</td>
<td>8,054</td>
</tr>
<tr>
<td>23</td>
<td>65,69</td>
<td>5,252</td>
<td>105,30</td>
<td>9,28</td>
<td>80,38</td>
<td>6,042</td>
</tr>
<tr>
<td>24</td>
<td>78,94</td>
<td>5,872</td>
<td>107,10</td>
<td>10,27</td>
<td>80,84</td>
<td>6,614</td>
</tr>
<tr>
<td>25</td>
<td>82,2</td>
<td>6,542</td>
<td>113,50</td>
<td>9,29</td>
<td>77,91</td>
<td>6,288</td>
</tr>
<tr>
<td>26</td>
<td>81,12</td>
<td>6,801</td>
<td>105,90</td>
<td>10,36</td>
<td>86,5</td>
<td>7,108</td>
</tr>
<tr>
<td>27</td>
<td>92,35</td>
<td>7,964</td>
<td>106,40</td>
<td>8,47</td>
<td>87,36</td>
<td>7,125</td>
</tr>
<tr>
<td>28</td>
<td>93,85</td>
<td>8,05</td>
<td>118,30</td>
<td>11,20</td>
<td>94,55</td>
<td>7,421</td>
</tr>
<tr>
<td>29</td>
<td>109,5</td>
<td>8,331</td>
<td>102,00</td>
<td>9,12</td>
<td>101,7</td>
<td>8,624</td>
</tr>
<tr>
<td>30</td>
<td>103,9</td>
<td>8,765</td>
<td>99,64</td>
<td>8,68</td>
<td>95,84</td>
<td>8,277</td>
</tr>
<tr>
<td>31</td>
<td>104,1</td>
<td>9,286</td>
<td>109,80</td>
<td>9,95</td>
<td>88,78</td>
<td>7,731</td>
</tr>
<tr>
<td>32</td>
<td>90,13</td>
<td>7,684</td>
<td>94,59</td>
<td>7,78</td>
<td>97,01</td>
<td>8,104</td>
</tr>
<tr>
<td>33</td>
<td>95,12</td>
<td>8,3</td>
<td>91,41</td>
<td>7,25</td>
<td>89,38</td>
<td>7,594</td>
</tr>
</tbody>
</table>

Srednja vrijednost: 89,34, 7,62, 105,34, 9,43, 88,05, 7,33
8.1 Statistička analiza dobivenih rezultata
Statistička analiza dobivenih rezultata za savojnu čvrstoću i savojni modul elastičnosti provedena je pomoću softverskih paketa Excel i Minitab 17. Savojna čvrstoća analizirana je i uspoređena za sve tri serije. Grafovi na slici 50. prikazuju razdiobu normalizirane savojne čvrstoće za uzorke iz LT, L45° i LR serije.

Slika 50. Funkcija komulativne razdiobe podataka za normaliziranu savojnu čvrstoću.
Na slici 51. prikazane su regresijske jednadžbe za savojnu čvrstoću serija LT, L45° i LR. G. U jednadžbama $y = mx + b$; koeficijent m predstavlja weibullov modul rasipanja. Najveći je za seriju L45°, a najmanji za LT seriju. To znači da je varijabilnost savojne čvrstoće serije L45° najmanja, a serije LT najveća. Koeficijent determinacije (R^2), koji govori o reprezentativnosti modela, visok je za sve serije. Najviši je za seriju LT, a najniži za seriju L45°.

![Graph LT](image)

$y = 9,0546x - 41,166$

$R^2 = 0,9732$

![Graph L45°](image)

$y = 11,454x - 53,848$

$R^2 = 0,9189$

![Graph LR](image)

$y = 11,062x - 50,038$

$R^2 = 0,9663$

Slika 51. Prikaz regresijske jednadžbe za savojnu čvrstoću.
Savojni modul elastičnosti E, mjera za krutost materijala, također je analiziran korištenjem Weibullove razdiobe. Sljedeći grafovi prikazani na slici 52. opisuju komulativnu razdiobu normaliziranog modula elastičnosti za serije LT, L45 i LR.

Slika 52. Prikaz komulativne razdiobe podataka za normalizirani modul elastičnosti
Na slici 53. prikazane su regresijske jednadžbe za modul elastičnosti serija LT, L45° i LR. U jednadžbama $y = mx \pm b$; koeficijent m predstavlja weibullov modul rasipanja. Najveći je za seriju L45°, a najmanji za LT seriju. To znači da je varijabilnost savojnog modula elastičnosti serije L45° najmanja, a serije LT najveće. Koeficijent determinacije najniži je kod serije L45°, a nešto je viši (i podjednak) kod serija LT i LR.

![Graphs showing regression equations for LT, L45°, and LR series](image)

Slika 53. Prikaz regresijske jednadžbe modula elastičnosti
U tablici 19. prikazani su rezultati statističke analize za sve tri serije.

Tablica 19. Statistički podaci za rezultate mjerenja

<table>
<thead>
<tr>
<th>Mehaničko svojstvo</th>
<th>Orjentacija</th>
<th>min</th>
<th>max</th>
<th>Srednja vrijed.</th>
<th>Stand. devijacija</th>
<th>Weibullovi parametri m</th>
<th>σ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Savojna čvrstoća, MPa</td>
<td>LT</td>
<td>65,69</td>
<td>112,2</td>
<td>89,34</td>
<td>11,83</td>
<td>9,05</td>
<td>94,39</td>
</tr>
<tr>
<td></td>
<td>L45°</td>
<td>82,48</td>
<td>141,4</td>
<td>105,34</td>
<td>11,30</td>
<td>11,45</td>
<td>110,51</td>
</tr>
<tr>
<td></td>
<td>LR</td>
<td>69,05</td>
<td>106,4</td>
<td>88,05</td>
<td>9,62</td>
<td>11,06</td>
<td>92,26</td>
</tr>
<tr>
<td>Savojni modul elastičnosti, GPa</td>
<td>LT</td>
<td>5,25</td>
<td>9,63</td>
<td>7,62</td>
<td>1,13</td>
<td>7,81</td>
<td>8,09</td>
</tr>
<tr>
<td></td>
<td>L45°</td>
<td>7,25</td>
<td>12,31</td>
<td>9,43</td>
<td>1,35</td>
<td>8,55</td>
<td>10,02</td>
</tr>
<tr>
<td></td>
<td>LR</td>
<td>5,36</td>
<td>9,76</td>
<td>7,33</td>
<td>1,12</td>
<td>8,10</td>
<td>7,80</td>
</tr>
</tbody>
</table>

Vrijednosti za savojnu čvrstoću i savojni modul elastičnosti najveće su za seriju L45°, gdje su tijek godova i smjer sile pod kutom od 45°. Najniže vrijednosti su kod serije LR, gdje su tijek godova i smjer sile pod kutom od 90°. Vrijednost Weibullovog modula m najveća je za seriju L45°.

Na slici 54. prikazani su vrijednosti savojne čvrstoće za sve tri serije dobiveni softverskim paketom Minitab 17. Na slici se vidi preklapanje rezultata za uzorke serije LR i LT, dok su rezultati za seriju L45° odmaknuti prema višim vrijednostima savojne čvrstoće.

Histogram razdiobe podataka prikazan je na slici 55.
Slika 55. Histogram rezultata mjerenja savojne čvrstoće

Slika 56. Weibullova razdioba za ispitivanje modula elastičnosti

Slika 57. Histogram rezultata mjerenja modula elastičnosti
Prema slici 57. uočavamo približno slične krivulje distribucije za prve dvije serije ispitivanja te pomak u desno krivulje koja opisuje treću seriju podataka. Također se uočava najviša frekvencija kod serije LT, a najveći raspon vrijednosti kod serije L45°.

U tablici 19. prikazane su vrijednosti savojne čvrstoće i savojnog modula elastičnosti rezultata subfosilnog brijesta (starosti 670 god.) dobivene ispitivanjem sa vrijednostima za recentni brijest dobivenim iz literaturnih izvora [12].

Očito je da, unatoč velikoj starosti subfosilnog brijesta i dugotrajnom boravku u vlažnim i anaerobnim uvjetima, nije došlo do značajnog pada savojne čvrstoće i savojnog modula elastičnosti.

Tablica 20. Usporedba recentnog i subfosilnog poljskog brijesta

<table>
<thead>
<tr>
<th></th>
<th>Recentni brijest</th>
<th>Subfosilni brijest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LT</td>
</tr>
<tr>
<td>Savojna čvrstoća, MPa</td>
<td>56...89...200</td>
<td>89,3</td>
</tr>
<tr>
<td>Modul elastičnosti, GPa</td>
<td>5,9...11,1...16</td>
<td>7,62</td>
</tr>
</tbody>
</table>
10. Zaključak

Mikroskopskom analizom anatomije mikrostrukture debla izvađenog iz korita rijeke Save na području sjeverne Bosne i Hercegovine, utvrđeno je da se radi o vrsti iz roda *Ulmus* (brijest). S obrizom na vrste koje su, do dolaska holandske bolesti rasle na ovom području, vrlo je velika vjerojatnost da se radi o poljskom brijestu.

Analiza starosti provedena metodom radioaktivnog ugljikovog izotopa 14C, s vjerojatnošću od 95%, uzorak datira između 1263. i 1400. god. Danas na ovim prostorima više nema poljskog brijesta, zbog holandske bolesti koja ga je pogodila početkom prošlog stoljeća.

Ispitivanje savojne čvrstoće i savojnog modula elastičnosti na uzorcima izrezanim iz subfosilnog brijesta, provedeno je standardnom metodom *savijanja u tri točke*. Tijekom ispitivanja savojna sila je bila okomita na vlakanca. Smjer savojne sile u odnosu na tijek godova bio je pod kutovima od 0° (LT serija), 45° (L45° serija) i 90° (LR serija).

Najveća vrijednost savojne čvrstoće izmjerena je kod L45°, a najmanja kod LR serije. Savojna čvrstoća L45° serije je za 19,6% viša u odnosu na seriju LR. Vrijednost savojne čvrstoće LT serije veća je za 1,3% od savojne čvrstoće LR serije. Vrijednost standardne devijacije aritmetičke sredine najviša je kod LT serije (11,83), nešto je niža kod serije L45° (11,30), a najniža kod serije LR (9,62).

Najveća vrijednost savojnog modula elastičnosti izmjerena je kod L45°, a najmanja kod LR serije. Modul elastičnosti L45° serije je za 28,6% viši u odnosu na seriju LR. Vrijednost savojnog modula elastičnosti LT serije veća je za 3,8% od savojnog modula elastičnosti LR serije. Vrijednost standardne devijacije aritmetičke sredine najviša je kod L45° serije (1,35), nešto je niža kod serije LT (1,13) i kod serije LR (1,12).

Vrijednosti savojne čvrstoće i savojnog modula elastičnosti dobiveni tijekom ispitivanja ponašaju se po zakonu Weibullove razdiobe. Weibullov modul najviši je kod L45° serije, a najniži kod LT serije. Koeficijent determinacije je za sve serije blizu vrijednosti 1.

Dobiveni rezultati za savojnu čvrstoću i savojni modul elastičnosti su unutar raspona vrijednosti za recentni brijest.

Provedeno istraživanje pokazalo je da dugi borava u specifičnim uvjetima riječnog korita nije značajno utjecao na savojnu čvrstoću i savojni modul elastičnosti drva.
11. Popis Literature

[2] Dr. Ivo Horvat, Dr. Juraj Krpan: Drvno industrijski priručnik

DIPLOMSKI ZADATAK

Student: Antun Balaton

Naslov rada na hrvatskom jeziku: Utjecaj usmjerenosti strukture na savojnu čvrstoću drva
Naslov rada na engleskom jeziku: Effect of anisotropy on bending strength of wood

Opis zadatka:
U ranoj fazi razvoja gospodarstva drvo je bilo najvažnije tehnički materijal. Iako ga danas iz primjene sve više istiskuju drugi materijali (kompozitni i polimerni materijali te laki metali), drvo se i dalje u velikoj mjeri primjenjuje u građevinarstvu, brodogradnji, rudarstvu, poljoprivredi, te kao sirovina u proizvodnji celuloze i papira, u tekstilnoj industriji i dr.
Drvo je prirodan, obnovljiv i ekološki visoko-vrijedian konstrukcijski materijal. Osnovna prednost drva pred drugim konstrukcijskim materijalima jest povoljan omjer čvrstoće i gustoće. Drvo ima i neke nedostatke, a jedan od njih je usmjerenost strukture i svojstava.

U teorijskom dijelu rada potrebno je opisati strukturu drva i mehanička svojstva koja su posljedica takve strukture. U eksperimentalnom dijelu treba istražiti kako orijentacija s obzirom na godove u poprečnom presjeku drva utječe na vrijednosti vlačne čvrstoće.
U tu svrhu potrebno je napraviti sljedeće:
- pripremiti uzorke drva za mikroskopiranje i analizirati mikrostrukturu u tri karakteristična presjeka,
- pripremiti uzorke i provesti ispitivanje na savijanje,
- na temelju dobivenih rezultata odrediti savojni modul elastičnosti,
- dobivene rezultate statistički obraditi.

Na temelju dobivenih rezultata potrebno je donijeti odgovarajuće zaključke.

Zadatak zadala: Pede

Prof. dr. sc. Vera Rede

Rok predaje rada: 1. prosinca 2016.

Predsjednik Povjerenstva: Čoj
Prof. dr. sc. Framjo Cajner