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Abstract

In this paper a new approach to algebraic parameter identification of the linear SISO sys-
tems is proposed. The standard approach to the algebraic parameter identification is based
on the algebraic derivatives in Laplace domain as the main tool for algebraic manipulations
like elimination of the initial conditions and generation of linearly independent equations.
This approach leads to the unstable time-varying state-space realization of the filters for
the on-line parameter estimation. In this paper, the finite difference and shift operators in
combination with the frequency-shifting property of Laplace transform is applied instead of
algebraic derivatives. Resulting state-space realization of the estimator filters is asymptot-
ically stable and doesn’t require switch-of mechanism to prevent overflow of the estimator
variables. The proposed method is especially suitable for applications in closed-loop on-line
identification where the stable behavior of the estimators is a necessary requirement. The
efficiency of the proposed algorithm is illustrated on three simulation examples.

Keywords: Algebraic identification; Parameter identification; Linear systems; Operational
calculus

1. Introduction

There exist many different methods for parameter identification in the literature, like
maximum likelihood methods [1], orthogonal functions [2], Kalman filtering [3] and least-
squares methods [4], among many others. Relatively recently, a new approach to parameter
identification based on algebraic derivative method has been proposed by M. Fliess and H.
Sira-Ramirez [5, 6] for fast and reliable parameter estimation in feedback control systems.
The algebraic identification method provides an exact static formula for the unknown pa-
rameters which is based only on measurable input and output variables. The parameter
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calculation expressions are obtained via algebraic manipulations based on derivative oper-
ator in operational domain [7, 8]. This approach provides elimination of unknown initial
conditions and generation of linear relations in the unknown parameters, so that accurate
calculation of the parameters follows immediately from these relations. Unlike traditional
methods, the obtained estimator is non-asymptotic: the convergence toward true values of
the system parameters is quite fast (i.e., almost instantaneous). Also, the algebraic esti-
mators do not need statistical knowledge of the measurement noise, neither it requires the
classical persistency of excitation condition.

Several successful applications and experimental verifications of algebraic derivative ap-
proach have been reported in the literature. In [9, 10], an algebraic identification approach
is used for the fast on-line determination of the parameters of sinusoidal signals with un-
known amplitudes, phases and frequencies. A general algebraic framework for parameter
estimation of signals described by differential equations is proposed in [11]. The algebraic
derivative approach to state estimation is considered in [12, 13]. In [14], the algebraic deriva-
tive method is applied for the derivative estimation of noisy signals. In [15, 16], an algebraic
identification approach is proposed for linear systems with delayed inputs and structured
perturbations.

For several applications of parameter and state estimation in feedback control systems
the interested reader is referred to [17]. Next, several further reported applications are men-
tioned. In [18], the algebraic estimation algorithm is applied for the identification of the
parameters of a permanent magnet stepper motor and a magnetic bearing. In [19], an on-
line algebraic identification methodology for parameter and signal estimation in vibrating
mechanical system is experimentally verified. The output control and simultaneous online
algebraic parameter identification of perturbed 1-DOF suspension system is considered in
[20]. In [21], an identification method for parameters estimation of a position-controlled
servomechanism is proposed. In [22], a comparison between an algebraic parameter iden-
tification algorithm and classical asymptotic observers for the load of a boost converter is
presented.

Despite the all mentioned advantages of algebraic parameter estimation method, there is
a serious drawback, especially for applications in closed-loop on-line identification. Applica-
tion of algebraic derivatives for elimination of initial conditions in combination with invariant
filtering in the form of chain of integrators, leads to unstable time-varying state-space real-
ization of estimator filters. Since the estimator variables are unbounded, additional switch
off mechanism is necessary after a short period of time. Another disconnection strategy
is based on introducing an extra auxiliary parameter, called the “sentinel” parameter that
monitors the convergence of the rest of the estimated system parameters [20].

In this paper, an alternative approach to algebraic parameter identification, which pro-
vides stable on-line estimator filters realization, is proposed. The proposed approach is based
on application of the finite difference and shift operator in operational domain, instead of
algebraic derivative operator. Using these operators in combination with asymptotically sta-
ble invariant filtering, we obtain stable state-space realization of the estimator filters. In this
way, the on-line parameter identification process doesn’t require switch-off procedure after
some short time, neither the use of “sentinel” variables. Furthermore, additional advantage
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of application of the shift operator is that state-space realization has lower dimension then
in the case of using algebraic derivatives.

The remainder of the paper is organized as follows. Parameter identification problem
formulation for linear time-invariant SISO systems is presented in Section 2. The algebraic
parameter identification algorithm based on difference and shift operators is presented in
Section 3. The simulation results are presented in Section 4. Finally, the concluding remarks
are summarized in Section 5.

2. Problem formulation

2.1. Continuous linear SISO system

Consider the following continuous linear time-invariant system

y(n)(t) +
n−1∑

i=0

aiy
(i)(t) =

m∑

j=0

bju
(j)(t), (1)

with unknown initial conditions

y(i)(0) = y
(i)
0 , i = 0, 1, . . . , n− 1, (2)

where u(t) ∈ R and y(t) ∈ R are the system input and output, respectively. The system
order n is a priori known, and a0,..., an−1 and b0,..., bm are unknown parameters.

Note that the problem of nonzero unknown initial conditions often occurs in practice,
like for example in the identification of mechanical systems with weakly damped oscillations.
Waiting that the system to reach zero steady-state in the identification experiment can be
quite troublesome for the elastic systems with the small damping coefficients or for the
processes with slow time constants [23].

The Laplace transform applied on the Eq. (1) gives the following expression in the
operational domain

sny(s) +
n−1∑

i=0

ais
iy(s) =

m∑

j=0

bjs
ju(s) +

n−1∑

i=0

cis
i, (3)

where y(s) = L{y(t)} and u(s) = L{u(t)} are Laplace transforms of y(t) and u(t), respec-
tively. The coefficients ci on the right-side of Eq. (3) depend on unknown initial conditions
(2). The Eq. (3) can be written as

N(s)y(s) = B(s)u(s) +R(s), (4)

where

N(s) = sn +
n−1∑

i=0

ais
i, B(s) =

m∑

j=0

bjs
j, R(s) =

n−1∑

i=0

cis
i. (5)

3



The main objective of this paper is on-line identification of the parameters a0,..., an−1

and b0,..., bm using only the measured input u(t) and output y(t), under assumption of
unknown initial conditions. The second objective is determination of parameters c0,..., cn−1.

The first step in the identification of unknown parameters a0,..., an−1 and b0,..., bm is the
elimination of polynomial R(s) with coefficients c0,..., cn−1 which depend on unknown initial
conditions (2). The second step is generation of a set of n + m + 1 linearly independent
algebraic equation for determination of n+m+ 1 parameters a0,..., an−1 and b0,..., bm.

Instead of using algebraic derivative approach for elimination of initial conditions and
generation of linearly independent equations, in this paper we apply the finite difference and
shift operator in Laplace domain, which are presented in the following subsection.

2.2. Finite difference operator in Laplace domain

The finite difference operator in Laplace domain of a function f(s) is defined as follows

δqf(s) = f(s+ q)− f(s). (6)

The operator δq can be represented as

δq = eq d
ds − 1, (7)

where eq d
ds is the shift operator with property eq d

dsf(s) = f(s+ q).
For f(s) = sn, we have

δqs
n = (s+ q)n − sn =

n∑

k=1

(
n

k

)
sn−kqk. (8)

In other words, difference operator decreases the order of polynomials for one degree, so that
δn
q s

n−1 = 0, and

δn
q s

k = 0, ∀ k < n, (9)

where δn
q denotes the n-th successive application of finite difference operator

δn
q =

(
eq d

ds − 1
)n

=
n∑

k=0

(−1)k

(
n

k

)
e(n−k)q d

ds . (10)

For an arbitrary function f(s) it follows that

δn
q f(s) =

n∑

k=0

(−1)k

(
n

k

)
f(s+ (n− k)q). (11)

Applying the operator δm
q on function f(s) = sn for m ≤ n, we get

δm
q s

n =
m∑

k=0

(−1)k

(
m

k

)
(s+ (m− k)q)n =

m∑

k=0

(−1)k

(
m

k

) n∑

j=0

(
n

j

)
sn−j(m− k)jqj, (12)
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or

δm
q s

n =
n∑

j=m

γmjs
n−j, (13)

where

γmj = qj

(
n

j

) m∑

k=0

(−1)k

(
m

k

)
(m− k)j. (14)

The coefficient γmj has the following property: γmj = 0 for j < m (triangular matrix
structure).

Since the application of difference operator in Laplace domain produces shifted functions
like F (s+ q), the frequency shifting property of Laplace transform

F (s+ q) = L{e−qtf(t)}, (15)

will be used for the inverse transform of algebraic expressions to the time domain [8, 24].

3. Algebraic parameter identification

3.1. Identification of parameters a0,...,an−1 and b0,...,bm

In this section we describe the main steps towards the estimation of parameters a0,...,an−1

and b0,...,bm.

Step 1 - Elimination of initial conditions. The first step is annihilation of polynomial R(s)
which depends on unknown initial conditions. Since the degree of the polynomial R(s) is
deg(R) = n − 1, it follows from (9) that δn

qR(s) = 0. Applying the operator δn
q on (3), the

following expression is obtained

ȳn(s) +
n−1∑

i=0

aiȳi(s) =
m∑

j=0

bjūj(s), (16)

where

ȳi(s) = δn
q [siy(s)] =

n∑

k=0

(−1)k

(
n

k

)
(s+ (n− k)q)iy(s+ (n− k)q), (17)

ūj(s) = δn
q [sju(s)] =

n∑

k=0

(−1)k

(
n

k

)
(s+ (n− k)q)ju(s+ (n− k)q). (18)

Step 2 - Generation of linearly independent equations. The next step is generation of n+m+1
linearly independent equation from Eq. (16). This can be done using the shift operator eq d

ds .

Applying the operator elq d
ds for l = 0, 1, ..., n+m, on (16), the following set of algebraic

equations is obtained

ȳn(s+ lq) +
n−1∑

i=0

aiȳi(s+ lq) =
m∑

j=0

bjūj(s+ lq), l = 0, 1, ..., n+m, (19)
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or

Ȳln(s) +
n−1∑

i=0

aiȲli(s) =
m∑

j=0

bjŪlj(s), l = 0, 1, ..., n+m, (20)

where the following notation is introduced

Ȳli(s) = ȳi(s+ lq) =
n∑

k=0

(−1)k

(
n

k

)
(s+ (n+ l − k)q)iy(s+ (n+ l − k)q), (21)

Ūlj(s) = ūj(s+ lq) =
n∑

k=0

(−1)k

(
n

k

)
(s+ (n+ l − k)q)ju(s+ (n+ l − k)q), (22)

for i = 0, 1, ..., n, j = 0, 1, ...,m, l = 0, 1, ..., n+m. After the change of indices p = n+ l− k,
the above expressions become

Ȳli(s) =
n+l∑

p=l

µlp(s+ pq)iy(s+ pq), Ūlj(s) =
n+l∑

p=l

µlp(s+ pq)ju(s+ pq), (23)

where we have used the following shorthand notation

µlp = (−1)n+l−p

(
n

n+ l − p

)
, (24)

for l ≤ p ≤ n+ l.

Step 3 - Invariant filtering. In order to overcome effects of high-frequency noise in the
measurement of the output variable we must avoid time-derivatives of output variable, which
are represented by terms siy(s) = L{y(i)(t)} in Eq. (23). Multiplying both sides of Eq. (20)
by the transfer function

G(s) =
1

D(s)
, D(s) =

n̄∏

k=1

(s+ q̄k), (25)

which represents a low-pass filter, where n̄ > n, q̄k > 0 and q̄k 6= pq for k = 1, ..., n̄ and
p = 0, 1, ..., 2n+m, the following expression is obtained

Yln(s) +
n−1∑

i=0

aiYli(s) =
m∑

j=0

bjUlj(s), (26)

where

Yli(s) =
n+l∑

p=l

µlp
(s+ pq)i

D(s)
y(s+ pq), Ulj(s) =

n+l∑

p=l

µlp
(s+ pq)j

D(s)
u(s+ pq). (27)

6



By using the method of partial fraction, it follows that

ỹpi(s) =
(s+ pq)i

D(s)
y(s+ pq) =

n̄∑

k=1

Apik

s+ q̄k
y(s+ pq), (28)

ũpj(s) =
(s+ pq)j

D(s)
u(s+ pq) =

n̄∑

k=1

Apjk

s+ q̄k
u(s+ pq), (29)

where the coefficients Apik are determined by

Apik = lim
s→−q̄k

(s+ q̄k)
(s+ pq)i

D(s)
=

(pq − q̄k)i

n̄∏

j=1;j 6=k

(q̄j − q̄k)

. (30)

By defining the state variables in operational domain

xpk(s) =
y(s+ pq)

s+ q̄k
, wpk(s) =

u(s+ pq)

s+ q̄k
, (31)

the expressions (28) and (29) can be rewritten as

ỹpi(s) =
n̄∑

k=1

Apikxpk(s), ũpj(s) =
n̄∑

k=1

Apjkwpk(s), (32)

and finally

Yli(s) =
n+l∑

p=l

µlpỹpi(s), Ulj(s) =
n+l∑

p=l

µlpũpj(s). (33)

Step 4 - State-space realization. The following step is the state-space realization which pro-
vides on-line parameter identification. In the time domain the expressions in Eq. (31)
become a set of stable decoupled linear differential equations

ẋpk(t) + q̄kxpk(t) = e−pqty(t), ẇpk(t) + q̄kwpk(t) = e−pqtu(t), (34)

with zero initial conditions, and expressions in Eq. (33) become

Yli(t) =
n+l∑

p=l

µlp

n̄∑

k=1

Apikxpk(t), Ulj(t) =
n+l∑

p=l

µlp

n̄∑

k=1

Apjkwpk(t). (35)

Furthermore, in the time domain Eq. (26) becomes

Yln(t) +
n−1∑

i=0

aiYli(t) =
m∑

j=0

bjUlj(t). (36)
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By introducing vectors yn(t) = [Y0n(t) Y1n(t) · · · Y(n+m)n(t)]T , a = [a0 a1 · · · an−1]T ,
b = [b0 b1 · · · bm]T , and matrices Y(t) ∈ R(n+m+1)×n, U(t) ∈ R(n+m+1)×(m+1) with elements
Yli(t) and Ulj(t) respectively, the expression (36) can be rewritten as follows

yn(t) = −Y(t)a + U(t)b =
[
−Y(t) U(t)

] [a
b

]
= Φ(t)θ, (37)

where Φ(t) = [−Y(t) U(t)] and θ = [aT bT ]T .
Since the differential equations (34) are asymptotically stable and the inputs y(t) and

u(t) are multiplied with decreasing in time exponential functions, it follows that solutions
xpk(t) and wpk(t) will be bounded even for unbounded inputs which satisfy: |y(t)| ≤ α1e

qt

and |u(t)| ≤ α2e
qt, for some α1, α2 > 0. In other words, the elements of matrix Φ(t) and

vector yn(t) will be bounded for every t > 0.

Step 5 - Singularity-free parameters calculation. The vector of unknown parameters θ can
be obtained from (37)

θ = Φ−1(t)yn(t) =
adj(Φ(t))

det(Φ(t))
yn(t) =

ϕ(t)

det(Φ(t))
, (38)

where ϕ(t) = adj(Φ(t))yn(t) = [ϕ1(t) ϕ2(t) · · · ϕn+m+1(t)]T . The system is said to be
identifiable if, and only if, det(Φ(t)) 6= 0, [5, 25].

The problem with the expression (38) is that at time t = 0, both the numerator and the
denominator are zero. Since the quotient is undetermined, we must evaluate the formula
starting at a later time t ≥ ε > 0.

The determinant that belongs to the identifier denominator may still cross the singular
value of zero, causing a local loss of identifiability. An approach to avoid this problem is
multiplication of equation (37) by ΦT (t) and integration during the time interval [0, t], to
obtain ∫ t

0

ΦT (τ)yn(τ)dτ =

(∫ t

0

ΦT (τ)Φ(τ)dτ

)
θ. (39)

Since the matrix

S(t) =

∫ t

0

ΦT (τ)Φ(τ)dτ, (40)

is symmetric and positive definite it is invertible, and linear system of equations (39) can
be solved for t ≥ ε > 0 using efficient numerical method like LU or Cholesky decomposition
[18].

Fig. 1 illustrates the above described steps in derivation of the final parameter identifi-
cation algorithm, which is further schematically illustrated in Fig. 2.

3.2. Identification of parameters c0, c1,...,cn−1

The identification of parameters c0, c1, . . . , cn−1 follows after the coefficients a0, . . . , an−1,
b0, . . . , bm have been determined. The procedure for this calculation is derived and presented
next.
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(
eq d

ds − 1
)n

sny(s) +
n−1∑

i=0

ais
iy(s) =

m∑

j=0

bjs
ju(s) +

n−1∑

i=0

cis
i

elq d
ds ȳn(s) +

n−1∑

i=0

aiȳi(s) =
m∑

j=0

bj ūj(s)

n̄∏

i=1

1
s + q̄i

Ȳln(s) +
n−1∑

i=0

aiȲli(s) =
m∑

j=0

bjŪlj(s)

L−1{∗} Yln(s) +
n−1∑

i=0

aiYli(s) =
m∑

j=0

bjUlj(s)

∫ t

0

ΦT (τ)(∗)dτ

ẋpk(t) + q̄kxpk(t) = e−pqty(t)
ẇpk(t) + q̄kwpk(t) = e−pqtu(t)

yn(t) = Φ(t)θ

θ = S−1(t)
∫ t

0

ΦT (τ)yn(τ)dτ

Operation System

l = 0, 1, ..., n + m

Figure 1: The schematic illustration of the main steps for the algorithm derivation.

9



Input/Output

u(t), y(t)

ẋpk(t) + q̄kxpk(t) = e−pqty(t)
ẇpk(t) + q̄kwpk(t) = e−pqtu(t)

p = 0, 1, ..., 2n + m; k = 1, ..., n̄

Yli(t) =
n+l∑

p=l

µlp

n̄∑

k=1

Apikxpk(t)

Ulj(t) =
n+l∑

p=l

µlp

n̄∑

k=1

Apjkwpk(t)

l = 0, 1, ..., n + m;
i = 0, 1, ..., n; j = 0, 1, ..., m

Φ(t) = [−Y(t) U(t)]
yn(t) = [Y0n(t) · · · Y(n+m)n(t)]T

S(t) =
∫ t

0

ΦT (τ)Φ(τ)dτ

θ = S−1(t)
∫ t

0

ΦT (τ)yn(τ)dτ

t ≥ ε > 0

[a0 · · · an−1 b0 · · · bm] = θT

µlp = (−1)n+l−p

(
n

n + l − p

)

l = 0, ..., n + m; l ≤ p ≤ n + l

Apik =
(pq − q̄k)i

n̄∏

j=1;j 6=k

(q̄j − q̄k)

p = 0, 1, ..., 2n + m;
i = 0, 1, ..., n; k = 1, ..., n̄

Parameters
n, m, n̄, q, q̄k, ε

k = 1, ..., n̄

Figure 2: The schematic illustration of the final parameter identification algorithm.
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If we apply the operator δl
q for l = 0, 1, ..., n− 1 on (3), we get

δl
q[s

ny(s)] +
n−1∑

i=0

aiδ
l
q[s

iy(s)]−
m∑

j=0

bjδ
i
q[s

ju(s)] =
n−1∑

i=l

ciδ
l
qs

i, (41)

where

δl
q[s

iy(s)] =
l∑

k=0

(−1)k

(
l

k

)
(s+ (l − k)q)iy(s+ (l − k)q), (42)

δl
q[s

ju(s)] =
l∑

k=0

(−1)k

(
l

k

)
(s+ (l − k)q)ju(s+ (l − k)q), (43)

δl
qs

i =
i∑

k=l

γlks
i−k, (44)

for i = 0, 1, ..., n− 1 and j = 0, 1, ...,m.
By changing index notation p = l − k, the above mentioned expressions become

δl
q[s

iy(s)] =
l∑

p=0

ηlp(s+ pq)iy(s+ pq), δl
q[s

ju(s)] =
l∑

p=0

ηlp(s+ pq)ju(s+ pq), (45)

where

ηlp = (−1)l−p

(
l

l − p

)
. (46)

By multiplying equation (41) with transfer function (25) we get

Ŷln(s) +
n−1∑

i=0

aiŶli(s)−
m∑

j=0

bjÛlj(s) =
n−1∑

i=l

ciQli(s), (47)

where

Ŷli(s) =
l∑

p=0

ηlp
(s+ pq)i

D(s)
y(s+ pq), Ûlj(s) =

l∑

p=0

ηlp
(s+ pq)j

D(s)
u(s+ pq), (48)

and

Qli(s) =
i∑

k=l

γlk
si−k

D(s)
. (49)

By introducing change of indices p = i− k, the equation (49) becomes

Qli(s) =
i∑

k=l

γlk
si−k

D(s)
=

i−l∑

p=0

γl,i−p
sp

D(s)
. (50)
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By using the method of partial fraction, it follows that

sp

D(s)
=

n̄∑

j=1

Bpj

s+ q̄j
, (51)

where

Bpj = lim
s→−q̄j

(s+ q̄j)
sp

D(s)
=

(−q̄j)p

n̄∏

i=1;i 6=j

(q̄i − q̄j)
, (52)

so that

Qli(s) =
i−l∑

p=0

γl,i−p

n̄∑

j=1

Bpj

s+ q̄j
. (53)

In time domain, the expression (47) becomes

Ŷln(t) +
n−1∑

i=0

aiŶli(t)−
m∑

j=0

bjÛlj(t) =
n−1∑

i=l

ciQli(t), (54)

where

Ŷli(t) =
l∑

p=0

ηlp

n̄∑

k=1

Apikxpk(t), Ûlj(t) =
l∑

p=0

ηlp

n̄∑

k=1

Apjkwpk(t), (55)

and

Qli(t) =
i−l∑

p=0

γl,i−p

n̄∑

j=1

Bpje
−q̄jt. (56)

By introducing vectors c = [c0 c1 · · · cn−1]T , ŷn(t) = [Ŷ0n(t) Ŷ1n(t) · · · Y(n−1)n(t)]T ,

and matrices Ŷ(t) ∈ Rn×n, Û(t) ∈ Rn×(m+1) and Q(t) ∈ Rn×n with elements Ŷli(t), Ûli(t)
and Qli(t) respectively, the expression (54) can be rewritten as follows

ŷn(t) + Ŷ(t)a− Û(t)b = Q(t)c, (57)

so that
c = Q−1(t)

(
ŷn(t)− Φ̂(t)θ

)
, (58)

for t ≥ ε > 0, where Φ̂(t) = [−Ŷ(t) Û(t)] and θ = [aT bT ]T is the vector of previously
estimated parameters. The singularity-free calculation of the parameter vector c can be
done using the same approach as in the case of the parameter vector θ, as presented in
Section 3.1.
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4. Simulation Examples

The performances of the proposed algebraic parameter identification algorithm will be
illustrated on the three examples related to the on-line parameter identification of the vi-
brating mechanical system with exogenous perturbation.

The dynamical model of the vibrating mechanical system is described by the differential
equation

mÿ(t) + cẏ(t) + ky(t) = u(t) + f(t), (59)

where y(t) is the mass displacement, u(t) is the control input (force), and f(t) is an external
disturbance. The unknown system parameters are the mass m, viscous damping c and
stiffness constant k.

4.1. Example 1: Frequency estimation of the 1-DOF mechanical oscillator

Consider first the mechanical system with known mass m = 1 kg, without dissipation
(c = 0) and control input (u(t) = 0), with constant unknown external force, f(t) = F0, and
with unknown initial conditions y(0) = y0 and ẏ(0) = v0,

ÿ(t) + ky(t) = F0, y(0) = y0, ẏ(0) = v0. (60)

The problem is on-line identification of the stiffness coefficient k in the case when the constant
external force and initial conditions are unknown, and the displacement measurement y(t)
is only available.

The Laplace transform of the differential equation (60) is

s2y(s)− sy0 − v0 + ky(s) =
F0

s
. (61)

Multiplying out the expression (61) by the complex frequency s, we obtain after rearrange-
ment

s3y(s) + ksy(s) = c2s
2 + c1s+ c0, (62)

where c2 = y0, c1 = v0 and c0 = F0.
Note that the general solution of the system (60) is

y(t) = A sin(ωt+ φ) +K, (63)

where ω =
√
k, K = F0/k, and the amplitude A and the phase φ depend on the initial

conditions. Taking the Laplace transform of the solution (63), we obtain after rearrangement
the same expression as (62) with the coefficients c2 = K + A sin(φ), c1 = Aω cos(φ) and
c0 = ω2K.

In other words, the identification of the stiffness coefficient k of the system (60) with
unknown initial conditions and constant external force is completely equivalent problem as
the frequency estimation of the periodic signal (63) with unknown bias, amplitude and phase.
This problem is solved in [9] by using the standard algebraic derivative method (ADM). In
the remainder of this subsection we will compare the performances of the frequency-shifting
method (FSM) presented in the previous section with the ADM presented in [9].
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4.1.1. Algebraic derivative method (ADM)

The first step in the algebraic approach to the parameter identification is elimination of
the unknown coefficients c0, c1 and c2 on the right-hand side of the expression (62). The
ADM uses derivative operator with respect to complex frequency s for the elimination of
the right-hand side of the Eq. (62). By differentiating the expression (62) three times with
respect to the complex variable s, the following expression is obtained

s3d
3y(s)

ds3
+ 9s2d

2y(s)

ds2
+ 18s

dy(s)

ds
+ 6y(s) + k

[
s
d3y(s)

ds3
+ 3

d2y(s)

ds2

]
= 0, (64)

which is free of the unknown coefficients c0, c1 and c2.
By multiplying the expression (64) with s−3, representing three iterated integrations in

the time domain, it is obtained the following expression

d3y(s)

ds3
+ 9

1

s

d2y(s)

ds2
+ 18

1

s2

dy(s)

ds
+ 6

1

s3
y(s) + k

[
1

s2

d3y(s)

ds3
+ 3

1

s3

d2y(s)

ds2

]
= 0, (65)

which is free of terms containing positive powers of the complex variable s, representing
undesired repeated time differentiations of the involved signals.

In the time domain, the expression (65) can be written as: −n(t) + kd(t) = 0, where

n(t) = z1 + t3y(t), d(t) = z4,
ż1 = z2 − 9t2y(t), ż4 = z5,
ż2 = z3 + 18ty(t), ż5 = z6 − t3y(t),
ż3 = 6y(t), ż6 = 3t2y(t).

(66)

Note that the Eq. (66) is the unstable time-varying linear system in perturbed Brunovsky’s
form. The output variables n(t) and d(t) are additionally filtered using the same second
order low-pass filter

n̈f = −2ζωnṅf − ω2
n(nf − n(t)), d̈f = −2ζωnḋf − ω2

n(df − d(t)), (67)

where ωn is the cut-off frequency and ζ is the damping factor. From the state-space realiza-
tion (66) and (67) it follows that the ADM-based estimator filter is of the 10th order.

Since the quotient k = n(t)/d(t) is not affected by the invariant filtering (67), the final
estimate is

k =
nf (t)

df (t)
. (68)

In order to avoid that the denominator df (t) cross the singular value of zero, an additional
invariant nonlinear filtering is proposed in [20]. By taking the integral of the absolute value
of the numerator and denominator, the fraction holds invariant

k =

(∫ t

0

|nf (τ)|dτ
)(∫ t

0

|df (τ)|dτ
)−1

, (69)

and the denominator of Eq. (69) is always strictly positive for t ≥ ε > 0.
The following parameters of the ADM-based estimator are used in the simulation: the

cut-off frequency ωn = 15 rad/s, and the damping factor ζ = 0.707.
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4.1.2. Frequency-shifting method (FSM)

By comparing (62) with (1) it follows that a2 = 0, a1 = k and a0 = 0, so that Eq. (26)
becomes

Y03(s) + a1Y01(s) = 0, (70)

where, based on Eq. (27) and (28), it follows

Y0i(s) =
3∑

p=0

µ0p
(s+ pq)i

D(s)
y(s+ pq) =

3∑

p=0

µ0p

n̄∑

k=1

Apik

s+ q̄k
y(s+ pq), i = 1, 3. (71)

By interchanging the summations in the above expression, it follows

Y0i(s) =
n̄∑

k=1

zik(s), zik(s) =
1

s+ q̄k

3∑

p=0

µ0pApiky(s+ pq), i = 1, 3. (72)

In the time domain, expressions in (72) become

Y0i(t) =
n̄∑

k=1

zik(t), żik + q̄kzik = y(t)
3∑

p=0

µ0pApike
−pqt, (73)

for i = 1, 3 and k = 1, ..., n̄. Note that the Eq. (73) defines a stable time-varying linear
system in the Jordan canonical form. By taking n̄ = 5, the state-space realization (73)
of the FSM-based estimator filter is also of the 10th order, same as the dimension of the
ADM-based estimator filter.

Finally, in the time domain from the Eq. (70) it follows

k = −Y03(t)

Y01(t)
. (74)

The singularity free solution is calculated using Eq. (69), by replacing nf (t) with −Y03(t)
and df (t) with Y01(t).

The following parameters of the FSM-based estimator are used in the simulation: fre-
quency shift q = 0.5, and filter poles are sk = −q̄k = −(4 + k), for k = 1, ..., 5.

4.1.3. Comparison of ADM and FSM

The parameters of the output signal (63) used in simulations are: A = 0.2 m, K = 0.1
m, φ = 1 rad and ω = 5 rad/s. The sampling time is 0.002 s.

Fig. 3 shows the output signal without measurement noise and estimated parameter
k = ω2 calculated by the ADM and FSM-based estimators. We can see that in the time
instant ε = 1 s when the estimators are switched on, the convergence toward real values of
the parameter k is almost instantaneous. By comparing the absolute relative error (ARE)
defined by

ARE(t) =

∣∣∣∣
k(t)− kreal

kreal

∣∣∣∣ , (75)
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where k(t) and kreal are the estimated and real value of the parameter, we can observe that
the FSM-based estimator provides faster convergence toward the real values of the parameter
k.

Fig. 4 shows the numerator and denominator in expressions (68) and (74) for ADM
and FSM-based estimators. Since the ADM-based estimator (66) is unstable, n(t) and
d(t) growing unboundedly in time. In the case of the FSM-based estimator numerator and
denominator are bounded in time.

Since the measurement noise and sampling period significantly affect the performances of
the parameter estimation algorithms, several simulations are performed in order to compare
the robustness of the ADM and FSM-based estimators. The measured signal ym(t) =
y(t)+ ξ(t) is the output sinal y(t) perturbed with the additive zero mean uniform noise ξ(t).
The amount of additive noise affecting the signal is usually expressed by the signal-to-noise
ratio (SNR). The SNR is defined as the ratio of the signal power to the noise power,

SNR =
Psignal

Pnoise

=

(
1

T

∫ T

0

y2(t)dt

)(
1

T

∫ T

0

ξ2(t)dt

)−1

, (76)

where T is the time interval of the signal. The SNR is usually expressed in decibels,
SNR(dB) = 10 log10(SNR).

Fig. 5 illustrates the convergence of the ADM and FSM-based estimators for different
values of signal-to-noise rate SNR and sampling time h. It can be seen that, comparing
with the FSM-based estimator, the estimation error in the case of the ADM-based estimator
becomes larger and more non-stationary for the larger values of the sampling time and for
the smaller values of the SNR.

The estimator performances depending on the SNR and h are more precisely illustrated
in Fig. 6. The error is measured by the mean absolute percentage error (MAPE) [10],
defined in the time interval [ε, T ] by

MAPE =
100

T − ε

∫ T

ε

ARE(t)dt. (77)

The average MAPE based on 300 Monte Carlo simulations is obtained for each value of
SNR. The average values of MAPE for signals with small amount of noise (SNR = 23.62
dB) and large amount of noise (SNR = 3.48 dB), for ADM and FSM-based estimators, are
listed in Table 1. From the Fig. 6 we can see that difference in MAPE between ADM and
FSM-based estimators is larger as SNR decreases and h increases. In the other words, the
FSM-based estimator is more robust to the measurement noise and values of the sampling
time then the ADM-based estimator.

4.2. Example 2: Parameters identification of the 1-DOF mechanical system

As the second example we consider the FSM-based parameter identification of the unper-
turbed mechanical system (59) when f(t) = 0, where only measurements of the displacement
y(t) and the control input u(t) are available. The nominal values of the system parameters
for the numerical simulations are m = 1.8754 kg, c = 3.7367 Ns/m, k = 377.2706 N/m and
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Figure 3: The comparison of ADM and FSM-based estimators in the case without measurement noise.
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Figure 5: The comparison of ADM and FSM-based estimators in the case with measurement noise for
different values of signal-to-noise rate SNR and sampling time h.

Table 1: The mean absolute percentage error for ADM and FSM-based estimators, depending on the signal-
to-noise rate and sampling time.

MAPE (%) for ADM MAPE (%) for FSM

h SNR = 23.62 SNR = 3.48 SNR = 23.62 SNR = 3.48
(s) (dB) (dB) (dB) (dB)

0.002 0.547 6.306 0.150 1.467

0.005 0.906 10.85 0.242 2.336

0.01 1.499 17.16 0.368 3.617

0.02 2.493 24.39 0.738 6.102
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Table 2: Estimated values and ARE of system parameters in the cases with and without measurement noise.

Without noise (Fig. 7) With noise (Fig. 8)

Real Estimated ARE Estimated ARE
value value (%) value (%)

m 1.8754 1.8750 0.0194 1.8688 0.3494

c 3.7367 3.7274 0.2498 3.7206 0.4305

k 377.2706 377.1791 0.0241 375.1733 0.5558

input step force is u = 4 N, [19]. Initial conditions are y(0) = y0 = 0.4 m and ẏ(0) = v0 = 0.3
m/s. The sampling time is 10−3 s.

The Laplace transform of the (59) is

m(s2y(s)− sy0 − v0) + c(sy(s)− y0) + ky(s) = u(s), (78)

where the initial conditions y0 and v0 are unknown. By comparing (78) with Eq. (3) it
follows that

a0 =
k

m
, a1 =

c

m
, b0 =

1

m
, c0 = v0 +

c

m
y0, c1 = y0.

By applying algebraic parameter identification algorithm described in Section 3.1, we can
identify parameters a0, a1 and b0, and finally calculate the system parameters: m = 1/b0,
c = a1/b0 and k = a0/b0.

The following parameters of the estimator are used in the simulation: frequency shift
q = 0.3, invariant filter order n̄ = 5, and filter poles are {−10.0,−10.5,−11.0,−11.5,−12.0}.
The estimated values and ARE of the system parameters in the cases with and without
measurement noise, at the end of the time interval T = 1 s, are listed in Table 2.

Fig. 7 shows the input force, output position and estimated parameters in the case
without measurement noise. We can see that in the time instant ε = 0.5 s when the
estimator is switched on, the convergence toward real values of the system parameters is
almost instantaneous.

Fig. 8 shows the input force, output position and estimated parameters in the case with
measurement noise. The noise signal is generated by means of piece-wise constant random
variables uniformly distributed in the interval [−0.01, 0.01] for the output position (about
10% of the maximum amplitude), and in the interval [−0.2, 0.2] for the input force (about 5%
of the maximum amplitude). We can see that, after short transient, the estimator converges
toward real values of system parameters.

4.3. Example 3: Identification of the frequencies of the exogenous periodic perturbation

The following example is the problem of determination of frequencies of the exogenous
perturbation containing two harmonic signals with different frequencies

f(t) = A1 sin(ω1t+ φ1) + A2 sin(ω2t+ φ2). (79)
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Figure 7: The system input, output and estimated parameters in the case without measurement noise.

All the signal parameters are unknown. In the case when u = 0, the Laplace transform of
the (59) is

m(s2y(s)− sy0 − v0) + c(sy(s)− y0) + ky(s) =
2∑

i=1

(
Aiωi cos(φi)

s2 + ω2
i

+
sAiωi sin(φi)

s2 + ω2
i

)
, (80)

Multiplying above expression with (s2 + ω2
1)(s2 + ω2

2) and after some manipulation, we get
(
s6 +

5∑

i=0

ais
i

)
y(s) =

5∑

i=0

cis
i, (81)

where the coefficients ci, i = 0, 1, ..., 5, depend on initial conditions and amplitudes and
phases of the exogenous signal, while the coefficients ai, i = 0, 1, ..., 5, depend on system
parameters and frequencies of the signal:

a0 = kω2
1ω

2
2, a1 = cω2

1ω
2
2, a2 = k(ω2

1 + ω2
2) + ω2

1ω
2
2,

a3 = c(ω2
1 + ω2

2), a4 = k + ω2
1 + ω2

2, a5 = c.

The frequencies can be determined from the following equations

ω4
1 −

a3

a5

ω2
1 +

a1

a5

= 0, ω2
2 =

a3

a5

− ω2
1. (82)
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Figure 8: The system input, output and estimated parameters in the case with measurement noise.

By applying the algebraic parameter identification algorithm, we can identify the parameters
ai, i = 0, 1, ..., 5. The following parameters of the estimator are used in the simulation: the
frequency shift q = 0.3, the invariant filter order n̄ = 7, and the filter poles are
{−3.0,−3.6,−4.3,−5.0,−5.6,−6.3,−7.0}.
Fig. 9 shows the estimated parameters in the case when the system and signal parameters

are: m = 1 kg, c = 4 Ns/m, k = 13 N/m, ω1 = 9 rad/s, ω2 = 11 rad/s, A1 = 0.05 N,
A2 = 0.06 N, φ1 = 0.1 and φ2 = 0.2.

The obtained relative errors of the parameters ai, i = 0, 1, ..., 5 at the end of time interval
t = 4 s are 0.0008%, 0.0013%, 0.0013%, 0.0045%, 0.0014%, 0.0057%, respectively.

5. Conclusions

In this paper an alternative to algebraic derivative-based parameter identification of the
linear SISO systems is proposed. The proposed approach is based on the difference and
the shift operators and corresponding frequency-shifting property of the Laplace transform.
The main benefit of this approach is stable state-space filter realization of the estimator.
The simulation results demonstrate fast, almost instantaneous, convergence of the estimated
parameters toward true values of system parameters. It is shown that the proposed estimator
is insensitive to unknown initial conditions and robust with respect to measurement noise.
The proposed methodology can be applied also for the stable filter realization of the algebraic
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Figure 9: The estimated parameters in the case of the periodic disturbances.

state estimators and the signal derivative estimators. The future work will be oriented toward
applications of the proposed approach to the identification and estimation methods in the
feedback control of distributed parameter systems.
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