SVEUČILIŠTE U ZAGREBU
FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Luka Vukmirović

Zagreb, 2017.
DIPLOMSKI RAD

Mentori:
Prof. dr. sc. Lovorka Grgec-Bermanec, dipl. ing.

Student:
Luka Vukmirović

Zagreb, 2017.
Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i uz navedenu literaturu.

Zahvaljujem se profesorici Lovorki Grgec-Bermanec, na ideji i suradnji pri izradi ovog rada, te cijeloj postavi Laboratorija za procesna mjerenja na Fakultetu strojarstva i brodogradnje.

Luka Vukmirović
SVEUČILIŠTE U ZAGREBU
FAKULTET STROJARSTVA I BRODOGRADNJE
Središnje povjerenstvo za zavrsne i diplomске ispitne
Povjerenstvo za diplomski ispit studija strojarstva za smjerove:
procesno-energetski, konstruktivski, brodostrojarski i inženjersko modeliranje i računalne simulacije

DIPLOMSKI ZADATAK

Student: Luka Vukmirović
Mat. br.: 0035177831

Naslov rada na hrvatskom jeziku: Projekt sustava za mjerenja protočne količine oštrom prigušnicom
Naslov rada na engleskom jeziku: Design of fluid flow measurement system with orifice plate

Opis zadatka:
Za potrebe kontrolnih mjerenja i/ili ispitivanja mjernila protoka potrebno je projektirati sustav za mjerenje protočne količine oštrom prigušnicom. Predviđeni nazivni otvor DN30 i zvuk kao račni medij. U radu koristiš postojeću mjernu opremu i programsku podršku u Laboratoriju za procesna mjerenja, te razmotrati mogućnosti poboljšanja zadanog mjernog sustava.

Potrebno je izraditi:
• Pregled metoda mjerenja protoka.
• Prikaz mjernih linija za mjerenje protoka oštrom prigušnicom.
• Odabir glavnih komponenti sustava i procjenu troškova.
• Opis postupka mjerenja.
• Proračun brzina strujanja, protočnih količina i mjernih nesigurnosti.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadano: [Redakcija]
Izv. prof. dr. sc. Lovorka Grgec Bermanec

Predsjednica Povjerenstva: [Redakcija]
Prof. dr. sc. Tanja Jurčević Lulić
Sadržaj

<table>
<thead>
<tr>
<th>Popis slika</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popis tablica</td>
<td>IV</td>
</tr>
<tr>
<td>Popis dijagrama</td>
<td>V</td>
</tr>
<tr>
<td>Popis oznaka</td>
<td>VI</td>
</tr>
<tr>
<td>Sažetak</td>
<td>VIII</td>
</tr>
</tbody>
</table>

Summary .. IX

1. **Uvod** .. 10
2. **Općenito o mjerenju protoka** .. 11
 2.1. **Povijest** .. 11
 2.2. **Metode** ... 12
 2.3. **Terminologija** ... 14
 2.3.1. **Jednadžba kontinuiteta** ... 15
 2.3.2. **Bernoullijeva jednadžba** 15
 2.3.3. **Zakon održanja mase** .. 16
3. **Metode mjerenja protoka** .. 17
 3.1. **Mjerači protoka diferencijalnim tlakom** 18
 3.1.1. **Metode mjerenja prigušenjem unutar sustava** 19
 3.1.2. **Metode mjerenja protoka Pitotovom cijevi** 23
4. **Prikaz i karakterizacija mjerne linije** 24
 4.1. **Opis norme ISO 5167** .. 24
 4.2. **Prikaz mjerne linije** .. 25
 4.3. **Karakterizacija mjerne linije** 27
5. **Mjerne pogreške i mjerna nesigurnost** 30
 5.1. **Mjerne pogreške** .. 30
 5.2. **Mjerna nesigurnost** ... 30
 5.2.1. **Procjena mjerne nesigurnosti tipa A** 31
 5.2.2. **Procjena mjerne nesigurnosti tipa B** 32
 5.2.3. **Proširena mjerna nesigurnost** 32
6. **Opis mjerenja** ... 33
 6.1. **Specifikacija dijelova mjerne linije** 34
 6.2. **Postupak mjerenja** ... 39
7. **Rezultati mjerenja i proračun za protok** 40
<table>
<thead>
<tr>
<th>Luka Vukmirović</th>
<th>Diplomski rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Rezultati mjerenja</td>
<td>40</td>
</tr>
<tr>
<td>7.2. Proračun protoka</td>
<td>42</td>
</tr>
<tr>
<td>7.3. Procjena i proračun mjerne nesigurnosti</td>
<td>45</td>
</tr>
<tr>
<td>8. Zaključak</td>
<td>52</td>
</tr>
<tr>
<td>Literatura</td>
<td>53</td>
</tr>
<tr>
<td>Prilozi</td>
<td>54</td>
</tr>
</tbody>
</table>
Popis slika

Slika 1. Venturijeva cijev za mjerenje protoka u vodovodu, 19. Stoljeće 12
Slika 2. Koncept jednadžbe kontinuiteta za nestlačive fluide ... 15
Slika 3. Koncept Bernouliljeve jednadžbe .. 16
Slika 4. Sustav za mjerenje protoka plina .. 18
Slika 5. Princip mjerenja oštrom prigušnicom ... 20
Slika 6. Dodatni pad tlaka Δp za različite vrste prigušenja ... 21
Slika 7. Shematski prikaz mjerne linije .. 26
Slika 8. Ventilator .. 26
Slika 9. Rastavljena oštra prigušnica .. 27
Slika 10. Vrijednosti relativnog tlaka unutar mjerne linije .. 28
Slika 11. Normalna razdioba .. 31
Slika 12. Postavljena mjerna linija .. 33
Slika 13. Oštra prigušnica .. 34
Slika 14. Pretvornik tlaka Baratron 120A .. 35
Slika 15. Digitalni tlakomjet PR4000B ... 35
Slika 16. Termometar Fluke 724 .. 36
Slika 17. Ventilator .. 36
Slika 18. Potenciometar .. 37
Slika 19. Anemometar sa žarnom niti i digitalni prikaz ... 37
Slika 20. Sučelje programa LPM Logger Wika ... 38
Slika 21. Sušilo za kosu i prijenostni transformator ... 38
Popis tablica

Tablica 1. Radni uvjeti za mjerač protoka ... 13
Tablica 2. Prednosti i nedostaci mjerača protoka diferencijalnog tlaka 19
Tablica 3. Prednosti i nedostaci oštire prigušnice ... 22
Tablica 4. Prednosti i nedostaci Venturijeve cijevi .. 22
Tablica 5. Prednosti i nedostaci mlaznice ... 22
Tablica 6. Rezultati mjerenja - ventilator ... 40
Tablica 7. Rezultati mjerenja - sušilo za kosu .. 41
Tablica 8. Osrednjene vrijednosti svih mjerenja ... 41
Tablica 9. Rezultati proračuna i podaci bitnih veličina .. 43
Tablica 10. Mjerna nesigurnost za točku nominalnog pada tlaka Δp=0,4mbar kod ventilatora .. 46
Tablica 11. Mjerna nesigurnost za točku nominalnog pada tlaka Δp=0,8mbar kod ventilatora .. 47
Tablica 12. Mjerna nesigurnost za točku nominalnog pada tlaka Δp=1,2mbar kod ventilatora .. 47
Tablica 13. Mjerna nesigurnost za točku nominalnog pada tlaka Δp=1,6mbar kod ventilatora .. 48
Tablica 14. Mjerna nesigurnost za točku nominalnog pada tlaka Δp=2mbar kod ventilatora .. 48
Tablica 15. Mjerna nesigurnost za točku nominalnog pada tlaka Δp=2,4mbar kod ventilatora .. 49
Tablica 16. Odstupanja kod mjerenja i proračuna protoka u slučaju ventilatora 49
Tablica 17. Odstupanja kod mjerenja i proračuna protoka u slučaju ventilatora 50
Popis dijagrama

Dijagram 1. Podjela metoda mjerenja protoka u cijevima ... 13
Dijagram 2. Odnos masenog protoka i pada tlaka na oštroj prigušnici – ventilator 44
Dijagram 3. Odnos masenog protoka i pada tlaka na oštroj prigušnici - sušilo za kosu 44
Dijagram 4. Odnos koeficijenta C i brzine strujanja - ventilator ... 45
Dijagram 5. Odnos koeficijenta C i brzine strujanja - sušilo za kosu 45
Dijagram 6. Odnos odstupanja izmjerenog protoka i za svaku točku nominalnog pada tlaka kod ventilatora ... 50
Dijagram 7. Odnos odstupanja izmjerenog protoka i za svaku točku nominalnog pada tlaka kod sušila za kosu ... 50
Latinične oznake

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis oznake</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>m²</td>
<td>Površina cijevi</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>Koeficijent protjecanja</td>
</tr>
<tr>
<td>D</td>
<td>m</td>
<td>Promjer svjetlog otvora cijevi</td>
</tr>
<tr>
<td>d</td>
<td>m</td>
<td>Promjer svjetlog otvora prigušnice</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>Faktor pristupne brzine</td>
</tr>
<tr>
<td>g</td>
<td>m/s²</td>
<td>Gravitacija</td>
</tr>
<tr>
<td>h</td>
<td>m</td>
<td>Visina</td>
</tr>
<tr>
<td>K</td>
<td>-</td>
<td>Koeficijent Pitotove cijevi</td>
</tr>
<tr>
<td>k</td>
<td>-</td>
<td>Faktor prikrivanja</td>
</tr>
<tr>
<td>l</td>
<td>m</td>
<td>Duljina cijevi</td>
</tr>
<tr>
<td>n</td>
<td>-</td>
<td>Broj mjerenja</td>
</tr>
<tr>
<td>p</td>
<td>Pa</td>
<td>Tlak</td>
</tr>
<tr>
<td>(p_{\text{din}})</td>
<td>Pa</td>
<td>Dinamički tlak</td>
</tr>
<tr>
<td>(p_{\text{stat}})</td>
<td>Pa</td>
<td>Statički tlak</td>
</tr>
<tr>
<td>(p_1)</td>
<td>Pa</td>
<td>Tlak prije oštre prigušnice</td>
</tr>
<tr>
<td>(p_2)</td>
<td>Pa</td>
<td>Tlak poslije oštre prigušnice</td>
</tr>
<tr>
<td>(Q_m)</td>
<td>kg/h</td>
<td>Maseni protok</td>
</tr>
<tr>
<td>(Q_v)</td>
<td>m³/h</td>
<td>Volumni protok</td>
</tr>
<tr>
<td>(R_{\text{D}})</td>
<td>-</td>
<td>Reynoldsov broj</td>
</tr>
<tr>
<td>T</td>
<td>K</td>
<td>Termodinamička (apsolutna) temperatura</td>
</tr>
<tr>
<td>t</td>
<td>°C</td>
<td>Temperatura</td>
</tr>
<tr>
<td>U</td>
<td>-</td>
<td>Proširena mjerna nesigurnost</td>
</tr>
<tr>
<td>u</td>
<td>-</td>
<td>Ukupna mjerna nesigurnost</td>
</tr>
<tr>
<td>(u_A)</td>
<td>-</td>
<td>Mjerna nesigurnost tipa A</td>
</tr>
<tr>
<td>(u_B)</td>
<td>-</td>
<td>Mjerna nesigurnost tipa B</td>
</tr>
<tr>
<td>v</td>
<td>m/s</td>
<td>Brzina strujanja</td>
</tr>
<tr>
<td>w</td>
<td>m/s</td>
<td>Brzina strujanja</td>
</tr>
<tr>
<td>(\bar{x})</td>
<td>-</td>
<td>Srednja vrijednost mjerenja</td>
</tr>
</tbody>
</table>
Grčke oznake

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Jedinica</th>
<th>Opis oznake</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>-</td>
<td>Omjer unutarnjih promjera cijevi i prigušnice</td>
</tr>
<tr>
<td>Δ</td>
<td>-</td>
<td>Razlika (diferencija)</td>
</tr>
<tr>
<td>ε</td>
<td>-</td>
<td>Faktor ekspanzije</td>
</tr>
<tr>
<td>ν</td>
<td>m2/s</td>
<td>Dinamička viskoznost</td>
</tr>
<tr>
<td>μ</td>
<td>Pa s</td>
<td>Kinematička viskoznost</td>
</tr>
<tr>
<td>μ</td>
<td>-</td>
<td>Očekivana vrijednost rezultata mjerenja</td>
</tr>
<tr>
<td>ρ</td>
<td>kg/m3</td>
<td>Gostoća</td>
</tr>
<tr>
<td>ρ_0</td>
<td>kg/m3</td>
<td>Gostoća zraka pri temperaturi 0°C</td>
</tr>
<tr>
<td>σ</td>
<td>-</td>
<td>Standardna devijacija</td>
</tr>
<tr>
<td>$\Delta \omega$</td>
<td>Pa</td>
<td>Dodatni pad tlaka</td>
</tr>
</tbody>
</table>
Sažetak

Glavni cilj ovog diplomskog rada je dizajniranje, sastavljanje i karakterizacija mjerne linije za mjerenje protoka zraka oštrom prigušnicom nazivnog promjera DN25. Nakon odabira osnovnih komponenti i sastavljanja mjerne linije provedena su višestruka mjerenja, te proračun protoka i mjerne nesigurnosti za svaku točku. Strujanje zraka je ostvarivano na 2 načina, ventilatorom i sušilom za kosu.

Prvo je napravljen teorijski dio zadatka gdje je obrađena povijest mjerenja protoka, metode mjerenja protoka i terminologija vezana za mjerenja protoka. Nakon toga je na red došla konstrukcija mjerne linije koja je prilagođena oštroj prigušnici, gdje je uz simulaciju na računalu i primjenom teorije kupili cijev i ventilator koji su nam bili potrebni. Sastavljanje linije se odvijalo u Laboratoriju za procesna mjerenja, a tamo su također rađena i mjerenja. Mjerenja su napravljena tako da su odabrane nominalne točke za pad tlaka, sedam za ventilator i šest za sušilo za kosu, te je cilj bio izračunati protok za svaku točku. Računanje protoka je bilo napravljeno prema karakterizaciji mjerne linije koja je bila napravljena nakon sastavljanja i prije mjerenja u skladu sa normom ISO 5167. Nakon mjerenja i proračuna protoka je određena i mjerna nesigurnost, kao i analiza rezultata.

Sva mjerenja su rađena u Laboratoriju za procesna mjerenja na Fakultetu strojarstva i brodogradnje, također većina opreme koja je korištena za postavljanje mjerne linije je iz LPM-a, osim ventilatora i cijevi koji su kupljeni u svrhu konstrukcije i sastavljanja mjerne linije za mjerenje protoka.
Summary

Main objective of this work is design, assembly and characterization of measuring line for flow measurement of air with orifice plate that has nominal diameter DN25. After selecting required components and assembling the measuring line, multiple measurements were performed. The flow and the measurement uncertainty for each point were calculated. There were two ways to establish the air flow, by small cooling fan and hairdryer.

A theoretical part of the task was made first, where the history of flow measurement, flow metering and terminology related to flow measurements were done. After that, measurement line was constructed to fit the orifice plate that we were using, with the computer simulation and application of the theory we bought the tube and fan we needed. The line was assembled in the Laboratory for Process Measurements, and measurements were also made there. Measurements were made to select the nominal pressure drops, seven for the fan and six for the hair dryer, and the goal was to calculate the flow for each point. Flow calculation was made according to the characterization of the metering line that was made after assembly and before measurement according to ISO 5167. After measurement and flow calculation, measurement uncertainty as well as analysis of results were determined.

All measurements were made in the Laboratory for Process Measurement at the Faculty of Mechanical Engineering and Naval Architecture, and most of the equipment used for setting the measurement line was from the LPM, except the fans and pipes that were purchased for construction of measurement line.
1. Uvod

Protok je jedna od najstarijih veličina koja se mjerila, ne na ovakav način kao danas i ne baš za takvu svrhu kao danas, ali mjerenje protoka je starije od 4000 godina. Mjerenje protoka nije samo jedno od najstarijih mjerenja, nego je danas jedno od najzastupljenijih mjerenja, jer se koristi svugdje u svijetu i zastupljeno je u svim mogućim granama industrije, proizvodnje, medicine, itd. Mjerenje protoka je postalo široko zastupljeno jer se razvijalo tokom godina, odnosno metode mjerenja su se razvijale zajedno sa tehnologijom. Danas se može mjeriti protok svega, od tekućina i plinova do para i krutina, u raznim uvjetima mjerenja, ako se zna odabrati prava metoda za mjerenje protoka i kvalitetno postaviti mjernu liniju.

U ovom će radu biti postavljena i karakterizirana jedna takva mjerna linija za mjerenje protoka zraka oštrom prigušnicom. Uspostavljanje strujanja u cijevi će biti ostvreno na dva načina, ventilatorom i sušilom za kosu te će se preko pada tlaka računati protok zraka. Proračun i rezultati mjerenja će biti prikazani u tablicama te će biti uspoređeni sa mjernom nesigurnošću i odstupanjima koja su se pojavila tokom mjerenja.
2. Općenito o mjerenju protoka

2.1. Povijest

Teško je odrediti točno doba prvog mjerenja protoka, zato što prvi načini mjerenja datiraju daleko u prošlost, npr. moglo bi se reći da je prvo mjerenje protoka bio pješčani sat koji je mjerio vrijeme protokom pijeska. Dakako, prvi zapis o mjerenju protoka se pronalaze u starom Egiptu (pr. n. e.) gdje se mjerio protok vode. U starom Rimu, Frontius piše o tome, kako neki ljudi postavljaju dodatne cijevi kako bi povećali protok vode, što se smatra prvim pokušajem dobivanja besplatne vode u naseljenom području. Od antičkih civilizacija još se u staroj Kini spominju neki načini kontroliranje količine vode za potrebe navodnjavanja.

Najznačajnije vrijeme za mjerenje protoka je bilo 18. stoljeće, doba Daniela Bernoullia i Leonarda Eulera (oba se školovala na Sveučilištu u Baselu), gdje Bernoulli postavlja jednadžbu u kojoj povezuje brzinu protoka i tlak, koja je jedna od temeljnih jednadžbi u mehanici fluida, a Eulerova jednadžba ima široku primjenu kod turbostrojeva. Bernoulli i Euler su bili začetnici, ali otprilike u isto doba Poleni na Sveučilištu u Padovi, također postavlja temelje vezane za protok fluida. Henri Pitot, Henry Darcy, Robert Venturi i Reinhard Woltmann su proučavali protok u 18. stoljeću, a po nazvani su nazvani mjerači protoka.

Početkom 19. stoljeća Michael Faraday je radio pokuse vezane za magnetizam, te su njegovi nalazi koristili kao osnova za moderni magnetski mjerač protoka. U drugoj polovici 19. stoljeća Kent, Herschel, Siemens, Tylor, Hersey i Kennedy razvijaju mjerače protoka, a kasnije su i po svima nazvane tvrtke koje se bave mjerenjem protoka, a Venturijeva cijev je razvijena u moderni oblik u kojem ju srećemo i danas, te se koristi u cijelom svijetu.

2.2. Metode

Kroz povijest mjerači protoka su razvijani u različitim smjerovima tako da danas imamo mjerače protoka koji mogu mjeriti od protoka krvi u ljudskim arterijama do protoka vode u rijekama i kanalima, mogu mjeriti i protoke raznih tekućina i protoke visokotemperaturnih plinova, ili mogu mjeriti na tlakovima u vakuumu do visokih tlakova u reaktorima. Radni uvjeti i primjene za mjerače protoka su razni, pa ih treba pažljivo birati ovisno o situaciji za koju su nam potrebni (vidljivo u Tablici 1).
Tablica 1. Radni uvjeti za mjerače protoka

<table>
<thead>
<tr>
<th>U zatvorenim cijevima</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Protoci</td>
<td>0.1 g/h – 5000 t/s</td>
</tr>
<tr>
<td>Normni presjeci</td>
<td>0.1mm – 15m</td>
</tr>
<tr>
<td>Tlakovi</td>
<td>Vakuum – 3000bar</td>
</tr>
<tr>
<td>Temperature</td>
<td>-250°C – +800°C</td>
</tr>
<tr>
<td>Fluidi</td>
<td>Tekućine, plinovi, pare, mješavine fluida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U otvorenim kanalima</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dužine</td>
<td>50mm – dužina rijeka ili dužina oceanskih struja</td>
</tr>
<tr>
<td>Temperature</td>
<td>Okolišne temperature</td>
</tr>
</tbody>
</table>

Metode mjerenja protoka su različite, u cijevima se mogu mjeriti volumni protok ili maseni protok, a metode su direktna ili indirektna (slika 2.), dok se u otvorenim kanalima metode mjerenja protoka dijele na metode mjerenja u žlijebu ili metode mjerenja branama.
Skoro sve ove metode razvojem elektronike u zadnjih 20-ak godina imaju mogućnost elektronskog zapisa i spremanja podataka, naravno sada već postoji mogućnost spajanja na internet te se potrebnim podacima na mjeraču protoka može pristupiti bilo gdje u svijetu. Coriolisov mjerač masenog protoka je bio prvi koji je mogao spremati varijable poput mase, gustoće, volumena, temperature i viskoziteta samo sa jednim uređajem. Nove metode izbacuju konvencionalne načine mjerenja mehaničkim mjeračima protoka zbog toga jer su fleksibilnije, brže, isplativije, točnije i stabilnije.

2.3. Terminologija

Postoje 3 agregatna stanja (kruto, tekuće i plinovito), a mjerači protoka najčešće mjere samo jedno, ali mogu mjeriti i više agregatnih stanja odjednom. Plinovi i tekućine se mjere najčešće, ali postoje mjerenja protoka praha ili granula. Kako je spomenuto prije moguće je da se mjere mješavine krutog ili plinovitog stanja u tekućinama, mješavine krutog ili tekućeg stanja u plinovima ili mješavine sva tri stanja odjednom. Dakako, ako se mjeri protok samo jednog agregatnog stanja mjerenje je najpreciznije, kada su dva stanja u pitanju preciznost se znatno smanjuje, dok u slučaju mjerenja mješavine sva tri stanja visoka preciznost mjerenja je praktički nemoguća.

Svi mjerači protoka rade na prema prirodi strujanja fluida kojeg mjere, tako da bi se kvalitetnije moglo mjeriti ono što je potrebno. Tri osnovna zakona koja opisuju prirodu strujanja fluida su:

- Jednadžba kontinuiteta
- Bernoullijeva jednadžba
- Zakon održanja mase

Ostali bitni izračuni i mjerenja za što točnije mjerenje protoka su Reynoldsov broj, trenje unutar cijevi, viskozitet, cijevni profili, te vrsta, temperatura gustoća i tlak fluida. Detaljnije će biti opisane jednadžba kontinuiteta, Bernoullijeva jednadžba i zakon održanja mase kao tri osnovna zakona na kojima se temelji mjerenje protoka.
2.3.1. Jednadžba kontinuiteta

Ovaj zakon opisuje da je volumeni protok u svakom presjeku u zadanom vremenu unutar cijevi uvijek isti, ako je gustoća konstantna. Protok \(Q_v \) se računa tako da se pomnoži brzina strujanja \(v \) sa poprečnim presjekom cijevi \(A \). Slike 3. i 4. pokazuju koncept jednadžbe kontinuiteta, a na slici 4. točno prikazuje princip mjerenja svih mjerača protoka koji mjere na bazi ubrzanja. Jednadžba (1) je jednadžba kontinuiteta.

\[
Q_v = A_1 \cdot v_1 = A_2 \cdot v_2 = A_3 \cdot v_3 \quad (1)
\]

\(v_3 > v_2 > v_1 \)

Slika 2. Koncept jednadžbe kontinuiteta za nestlačive fluide

2.3.2. Bernoullijeva jednadžba

Bernoullijeva jednadžba opisuje odnos između energija u strujanju u cijevima. Tri vrste energije su:

- Potencijalna energija
- Tlačna energija
- Kinetička energija

Bernoulli je sa svojim pokusima dokazao da je ukupna energija u bilo kojem presjeku konstantna, što je vidljivo iz slike 4., a to opisuje i jednadžba 2.
Slika 3. Koncept Bernoullijeve jednadžbe

\[K_1 + P_1 + Z_1 = K_2 + P_2 + Z_2 = K_3 + P_3 + Z_3 = \text{const}. \quad (2) \]

Gdje je:

- **Kinetička energija:** \(K = \frac{m v^2}{2} \)
- **Potencijalna energija:** \(Z = \rho \cdot g \cdot h \)
- **Tlačna energija:** \(P = p \)

2.3.3. Zakon održanja mase

Zakon održanja mase kaže da će masa u sustavu ostati konstanta bez obzira na procese koji djeluju unutar sustava, što znači da materija ne može biti stvorena ili uništena čak i ako se događa promjena unutar sustava. Jednadžba 3 opisuje zakon održanja mase i taj zakon ima značajan utjecaj kod mjerenja protoka plinova. Iz slike 3. se može primijetiti da se promjenom presjeka mijenjaju tlak i gustoća što rezultira mjerenje protoka plinova znatno težim.

\[\dot{m} = A_1 \cdot \rho_1 \cdot v_1 = A_2 \cdot \rho_2 \cdot v_2 \quad (3) \]
3. Metode mjerenja protoka

Kako je ranije spomenuto metode mjerenja protoka su se razvijale kroz povijest i još se uvijek razvijaju zajedno sa razvojem tehnologije, a jer je mjerenje protoka najraširenije mjerenje u industriji nije se razvijalo na silu nego jer je potrebno. Mjeri se protok doslovno svega vode, plina, pare, petroleja, nafte, kemikalija, otpadnih voda i to je samo dio. Naravno da svi fluidi (ili neke vrste krutina) koje se mogu mjeriti ne mogu biti mjerene na isti način tako da se svaka metoda mjerenja protoka mora primijeniti na pravilan način, inače dolazi do pogrešaka pri mjerenju. Također u svemu tome treba paziti i na mjerni raspon u kojem području neki mjerač protoka funkcionira, te na osnovi toga primijeniti pravilnu metodu.

Prije u tekstu su navedene konkretne metode mjerenja protoka, ali osnovna podjela metoda mjerenje protoka je na:

- Metode koje oduzimaju energiju iz sustava
- Metode koje dodaju energiju sustavu

Kada se energija oduzima iz sustava, kod mjerenja protoka postoji dodatni pad tlaka i trenutno je većina mjerača protoka bazirana na ovakvim metodama. Za ovakve metode uvijek je nešto instalirano unutar cijevi kako bi se mjerio protok, to može biti rotor, prigušnica ili nekakvo suženje. Kod metoda mjerenja protoka dodavanjem energije sustavu, pad tlaka je neznatan, te je potpuno zanemariv. Ove metode su bazirane da dodaju energiju u sustav, ultrazvučno, toplinom ili magnetskim tokom, tako da niti ove metode nisu savršene, te također utječu na protok i konačne rezultate mjerenja.

Mjerači protoka koji koriste mjerenja oduzimanjem energije iz sustava su mjerači pozitivnim pomakom, mjerači diferencijalnog tlaka, mjerači varijabilnim područjem, mjerači sa turbinama ili vortex mjerači. Metode mjerenja koje koriste mjerači protoka koji dodaju energiju sustavu su elektromagnetski mjerači, ultrazvučni mjerači i termalni mjerači. Mjerači protoka bazirani na Coriolisovom mjerenju mase bazirani su na obje metode.

Od svih metoda detaljno će biti opisana metoda mjerenja protoka diferencijalnim tlakom, jer će se takva metoda primijeniti u direktnom pokusu mjerenja protoka u ovom diplomskom radu.
3.1. Mjerači protoka diferencijalnim tlakom

Bernoulli je najzaslužniji za razvijanje ovih mjerača protoka, jer je postavio bitne temelje za razvijanje ove vrste mjerača protoka. Ovakoim mjeračima protoka zajednička je stvar da stvaraju razliku tlaka (pad tlaka) posebnim dijelovima unutar sustava, kao npr. oštra prigušnica, Venturijeva ili Pitotova cijev, mlaznica ili nešto drugo. Svi mjerači protoka bazirani na diferencijalnom tlaku su bazirani da se protok utvrđuje iz razlike (diferencije) tlaka koja se mjeri na jednom od elemenata postavljenom unutar sustava. Ovi mjerači protoka mogu biti izvedeni u širokom broju oblika i veličina, te su jeftini, isplativi i mogu mjeriti protoke plinova, tekućina i pare. Osnovna podjela ovih mjerača protoka je na one koji imaju prigušenje unutar sustava (oštra priribnica, Venturijeva cijev, mlaznica, itd.) i na Pitotove cijevi.

Svi mjerači protoka koji mjere pad tlaka unutar sustava moraju imati primarni element (element koji će stvoriti pad tlaka), linije za prijenos tlaka, zatvorne ventile, razvodni ventil, pretvornik i kondenzacijsku komoru ako mjere protok pare.

![Slika 4. Sustav za mjerenje protoka plina](image-url)
Slika 4. prikazuje kako treba postaviti sustav za mjerenje protoka plina, dio 'a' je primarni element, dio 'b' zatvorni ventil, 'c' su mjerne linije za prijenos tlaka, 'd' je razvodni ventil i 'e' je pretvornik tlaka. Kod mjerenja protoka plina sustav treba biti postavljen tako da su pretvornik tlaka i mjerne linije postavljene iznad glavne cijevi i primarnog elementa, kako ne bi dolazilo do nakupljanja vlage u tim elementima. Za sustave mjerenja tekućina i para je obrnuta situacija, te su pretvornik i mjerne linije postavljene ispod glavne cijevi i primarnog elementa, što osigurava da su linije uvijek pune tekućine. Mjerenje para je izvedeno na taj način da se prije zatvornih ventila postavljaju kondenzacijske komore koje također osiguravaju da su mjerne linije uvijek pune tekućine.

Mjerači protoka diferencijalnog tlaka su široko primjenjivi i prihvaćeni u cijelom svijetu, također skup empirijskih podataka je ogroman i ugrađen je u veliki broj normi. Iako su primjenjivi na razne način i koriste se tako, glavna primjena im je za mjerenje para i kondenzata na visokim temperaturama. U tablici 2. su navedene prednosti i nedostaci ovih mjerača protoka.

Tablica 2. Prednosti i nedostaci mjerača protoka diferencijalnog tlaka

<table>
<thead>
<tr>
<th>Prednosti</th>
<th>Nedostaci</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Široka primjena, moguće mjerenje plinova, tekućina i para</td>
<td>• Pogodni za fluide niske viskoznosti (do 50mPas)</td>
</tr>
<tr>
<td>• Primjena metoda kod visokih tlakova (do 400bar) i visokih temperatura (do 1000°C)</td>
<td>• Kod mjerenja plinova temperatura i tlak moraju biti konstantni kako ne bi dolazilo do pogrešaka u mjerenju</td>
</tr>
<tr>
<td>• Zamjena pretvornika može biti obavljena tokom rada sustava</td>
<td>• Mjerenje protoka u sistemima koji traju kraće od minute nije moguće</td>
</tr>
<tr>
<td>• Jednostavna izrada, nema pomičnih dijelova</td>
<td>• Prijenosne verzije moraju imati dodatne ventile</td>
</tr>
</tbody>
</table>

3.1.1. Metode mjerenja prigušenjem unutar sustava

Jedna od najbitnijih stvari kod ovih metoda je da se je njihova primjena široka i da su lako prilagodljive za puno različitih procesa. Odabir metode bazira se na ulaznim i izlaznim protocima, dopuštenim ulaganjima i operativnim troškovima. Prigušenje se može ostvariti,
kao što je već navedeno, oštrom prigušnicom, Venturijevom cijevi ili mlaznicom, i te tri metode su najzastupljenije kod mjerenja protoka sa prigušnicom unutar sustava.

Slika 5. pokazuje efekt prigušivanja, u ovom slučaju prigušivanje se ostvarilo oštrom prigušnicom koja stvara naglo suženje (promjera \(d \)). Prema Bernoullijevoj jednadžbi, brzina strujanja se sa brzine \(v_1 \) povećava na brzinu \(v_2 \) u suženju, a prema tome dinamički tlak \((p_{\text{dyn2}}) \) raste, a statički tlak \((p_{\text{stat2}}) \) pada. Promjena koja je uzrokovana prigušivanjem se naziva pad tlaka na prigušnici, odnosno razlika (diferencija) tlaka i izražava se kao \(\Delta p = p_{\text{stat1}} - p_{\text{stat2}} \). Zato što ovisi o brzini protoka u cijevi, ova razlika tlaka je direktna mjera protoka u cijevi, a razlika tlaka se mjeri tako da dvije linije prenose podatke o izmjerenom tlaku te se signal u pretvorniku pretvara u odgovarajući izlazni signal. Spajanjem Bernoullijeve i nekih ostalih jednadžbi dobiva se izraz 4 za računanje masenog protoka \((Q_m) \) ili izraz 5 za računanje volumnog protoka.

\[
Q_m = C \cdot E \cdot \varepsilon \cdot \frac{\pi}{4} \cdot d^2 \cdot \sqrt{2 \cdot \Delta p \cdot \rho} \tag{4}
\]

\[
Q_v = C \cdot E \cdot \varepsilon \cdot \frac{\pi}{4} \cdot d^2 \cdot \sqrt{2 \cdot \Delta p \cdot \frac{1}{\rho}} \tag{5}
\]
Jednadžbe 4 i 5 se moraju modificirati ako se radi o plinovima ili o stlačivom fluidima. Za razliku kad se radi o nestlačivom fluidu, kada plin ili stlačivi fluid prolazi kroz prigušnicu dolazi do promjene tlaka, isto tako i do promjene gustoće. Prolaskom kroz prigušnicu dolazi do povećanja brzine, a kod plina ili stlačivog fluida ta promjena je još veća jer promjena brzine sad ovisi i o promjeni gustoće, zbog toga jer maseni protok ostaje konstantan. Takvo povećanje brzine utječe na povećanje potencijalne energije i na povećanje unutarnje energije fluida, što znači da kod plina ili nestlačivog fluida prolaskom kroz oštru prigušnicu dolazi do promjene temperature, ali naravno i do promjene tlaka.

Pad tlaka se odnosi na razliku u promjeni između dva statička tlaka (p_{stat1} i p_{stat2}), kao što prikazuje slika 5. Dinamički tlak koji se poveća tokom prigušenja (p_{dyn2}) se nakon ponovnog uspostavljanja normalnog strujanja pretvara u statički tlak, te se postiže identična brzina strujanja onoj koja je bila prije nailaska strujanja na prigušnicu. Dodatni pad tlaka (Δp) je ovisan o omjeru promjera prigušnice i unutarnjeg promjera cijevi ($\beta=d/D$). Slika 6. prikazuje promjenu dodatnog pada tlaka $\Delta \omega$ u odnosu na omjer β, dodatni pad tlaka $\Delta \omega$ je znatno manji u odnosu na pad tlaka Δp.

![Slika 6. Dodatni pad tlaka $\Delta \omega$ za različite vrste prigušenja](image)

Na slici 6. se vide različiti dodatni padovi tlaka $\Delta \omega$ za 3 različite vrste prigušivanja, linija 'a' pokazuje pad tlaka za oštru prigušnicu, linija 'b' za mlaznicu, a linija 'c' za Venturijevu cijev, dok iscrtana linija pokazuje dodatni pad tlaka za Pitotovu cijev, koji je konstantan. S obzirom na prikazano najbolja vrsta prigušenja je Venturijeva cijev, što znači i najpreciznija, dok se pri odabiru oštre prigušnice treba paziti kako omjer oštre prigušnice i unutarnjeg promjera cijevi ne bi bio premalen odnosno kako pad tlaka $\Delta \omega$ ne bi bio velik.

U tablici 3., 4. i 5. su navedene prednosti i mane za 3 najčešće izvedbe mjerača protoka metodom prigušivanja unutar sustava.
Tablica 3. Prednosti i nedostaci oštre prigušnice

Oštra prigušnica

<table>
<thead>
<tr>
<th>Prednosti</th>
<th>Nedostaci</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Jednostavan oblik i široka primjena</td>
<td>• Puno veći gubici u odnosu na</td>
</tr>
<tr>
<td>• Moguća izrada od velikog broja materijala</td>
<td>• Venturijevu cijev ili mlaznicu</td>
</tr>
<tr>
<td>• Nazivni promjer DN 10 – 1000</td>
<td>• Troškovi instalacije su visoki ako</td>
</tr>
<tr>
<td>• Maleno početno ulaganje</td>
<td>• uključuju dodatne</td>
</tr>
</tbody>
</table>

Tablica 4. Prednosti i nedostaci Venturijeve cijevi

Venturijeva cijev

<table>
<thead>
<tr>
<th>Prednosti</th>
<th>Nedostaci</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Manji padovi tlaka nego kod oštre prigušnice</td>
<td>• Velika ukupna duljina</td>
</tr>
<tr>
<td>• Otporni na trošenje i sužavanje</td>
<td>• Visoka početna ulaganja i troškovi</td>
</tr>
<tr>
<td>• Nisu osjetljivi na uzvodne promjene</td>
<td>• Veliki nominalni promjeri stvaraju probleme</td>
</tr>
<tr>
<td>• Odlični za visoke omjere β</td>
<td>kod instalacije i upravljanja</td>
</tr>
</tbody>
</table>

Tablica 5. Prednosti i nedostaci mlaznice

Mlaznica

<table>
<thead>
<tr>
<th>Prednosti</th>
<th>Nedostaci</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Jednostavan oblik, mali pad tlaka</td>
<td>• Povećana mjerna nesigurnost</td>
</tr>
<tr>
<td>• Mogu mjeriti velike protoke</td>
<td></td>
</tr>
<tr>
<td>• Pogodne za abrazivne fluide</td>
<td></td>
</tr>
</tbody>
</table>
3.1.2. Metode mjerenja protoka Pitotovom cijevi

Princip mjerenja protoka Pitotovom cijevi je sličan principu mjerenja protoka prigušivanjem, također se koristi dinamički tlak (pad tlaka), ali je mjerni element umjesto prigušnice senzor u obliku cijevi. Takva posebna cijev ima jednu ili više rupa na sebi i na prednjoj i na stražnjoj strani, te je povezana s pretvornikom tlaka. Rupe na prednjem dijelu mjere ukupni tlak (dinamički + statički), dok rupe na stražnjem dijelu mjere samo statički tlak, te je razlika između dva izmjerena tlaka jednaka dinamičkom tlaku i po jednadžbi 6 se izračuna maseni protok \(Q_m \) ili po jednadžbi 7 volumni protok \(Q_v \).

\[
Q_m = K \cdot \sqrt{2 \cdot \Delta p \cdot \rho} \quad (6)
\]

\[
Q_v = K \cdot \sqrt{2 \cdot \Delta p \cdot \frac{1}{\rho}} \quad (7)
\]

Cijev, odnosno senzor, koji mjeri tlak se proteže po sredini, cijelim promjerom glavne cijevi u kojoj mjerimo protok. Razlika tlakova je jako mala, a sa razvojem novih i preciznih pretvornika tlaka sve češće se upotrebljavaju baš Pitotove cijevi. Iako je razlika tlakova mala, nisu otporni na pojavu vrtloga i promjenu profila strujanja. Zbog tako malih padova tlaka moguće je mjerenje protoka u cijevima puno većeg promjera, ali treba imati na umu da u cijevima većeg promjera od 1000 mm pojavaju se vrtlozi koji mogu utjecati na mjerenje. Trošenje senzora ima minimalan utjecaj na mjernu preciznost.

U današnje vrijeme najčešća upotreba Pitotove cijevi je na zrakoplovima, koji imaju najmanje dvije Pitotove cijevi za mjerenje brzine aviona.
4. Prikaz i karakterizacija mjerne linije

4.1. Opis norme ISO 5167

Mjerna linija za mjerenje protoka se karakterizira metodom mjerenja protoka, u ovom radu je korištena metoda diferencijalnog tlaka, koristeći oštru prigušnicu. Uloga oštre prigušnice je stvoriti pad tlaka u sustavu, koji se vodi do odgovarajućeg pretvornika i mjeri. Nakon što je izmjeren pad tlaka, pomoću općeg izraza (4) računamo maseni protok.

\[Q_m = C \cdot E \cdot \varepsilon \cdot \frac{\pi}{4} \cdot d^2 \cdot \sqrt{2 \cdot \Delta p \cdot \rho} \] \hspace{1cm} (4)

Koeficijent \(C \), te faktori \(E \) i \(\varepsilon \) su bezdimenzijske veličine koje su određene eksperimentalnim metodama. Određivanje koeficijenta \(C \) je najzahtjevniji i najbitniji dio, osim mjerenja razlike tlaka, i opisan je jednadžbom 8.

\[C = 0,5961 + 0,0261 \cdot \beta^2 - 0,216 \cdot \beta^8 + 0,000521 \left(\frac{10^6 \cdot \beta}{Re_D} \right)^{0.7} + \]

\[(0,0188 + 0,0063 \cdot A) \cdot \beta^{3.5} \cdot \left(\frac{10^6}{Re_D} \right)^{0.3} \] \hspace{1cm} (8)

gdje je:

\[A = \left(\frac{19000 \cdot \beta}{Re_D} \right)^{0.8} \] \hspace{1cm} (9)

pri čemu je:

\[\beta = \frac{d}{D} \]

bezdimenzijski odnos svijetlih otvora prigušnice, odnosno cjevovoda u koji je prigušnica ugrađena. Reynoldsova značajka \((Re_D) \) se odnosi na strujanje ispred prigušnice i opisana je jednadžbom 10.

\[Re_D = \frac{w \cdot D}{\nu} \] \hspace{1cm} (10)

Faktor pristupne brzine \(E \) je bezdimenzionalna značajka koja obuhvaća povećanje brzine nastalo uslijed suženja otvora prigušnice, opisan je jednadžbom 11.
\[E = \frac{D^2}{\sqrt{D^2 - d^4}} = \frac{1}{\sqrt{1 - \beta^4}} \quad (11) \]

Faktor ekspanzije \(\varepsilon \) je bezdimenzionalna značajka koja obuhvaća promjenu gustoće u slučaju protoka kompresibilnog fluida, opisan je jednadžbom 12.

\[\varepsilon = 1 - (0,351 + 0,256 \cdot \beta^4 + 0,93 \cdot \beta^8) \left[1 - \left(\frac{p_2}{p_1} \right)^{1/\kappa} \right] \quad (12) \]

Postavljena ograničenja u pogledu \(d, D, \beta \) i \(\varepsilon \):

- \(d \geq 12,5 \) mm
- \(1000 \) mm \(\geq D \geq 50 \) mm
- \(0,8 \geq \beta \geq 0,23 \)
- \(\varepsilon \) se može računati samo ako je \(p_2/p_1 \geq 0,75 \).

Svi ovi izrazi su određeni prema normi ISO 5167-2:2003 u kojoj je u potpunosti definirana geometrija prigušnice, hrapavost obrade kao i način provjere zadanih ograničenja. Zahtjevi i ograničenja u pogledu ugradnje mjerne prigušnice definirani su točkom 6 ove norme koja također obuhvaća i definira upotrebu i izgled uređaja za izravnavanje strujanja koji se primjenjuju u slučaju da za ugradnju prigušnice ne postoji dužina ravne cijevi ispred prigušnice dovoljna za postizanje uniformnog polja tlakova po presjeku cijevi ispred prigušnice.

4.2. Prikaz mjerne linije

Na slici 7. je shematski prikaz mjerne linije za mjerenje protoka oštrom prigušnicom. Sustav će služiti za mjerenje protoka zraka, strujanje zraka kroz cijevi ostvarivat će se ventilatorom. Pad tlaka na oštroj prigušnici mjeri se pretvornikom tlaka, odnosno digitalnim tlakomjerom. Nakon očitavanja pada tlaka jednadžbom (4) računamo protok fluida, u ovom slučaju zraka. Termometar služi za mjerenje temperature koja nam služi za računanje gustoće zraka.
Slika 7. Shematski prikaz mjerne linije

Prikaz glavnih dijelova mjerene linije je napravljen u programu Solidworks, te su u ovom poglavlju prikazani u 3D obliku. Slika 8. prikazuje ventilator koji se koristi za ostvarivanje strujanja zraka, dok je slika 9. prikaz rastavljene oštre prigušnice. Detaljniji prikaz dijelova oštre prigušnice nalazi se na sklopnom crtežu.
Ovdje su prikazana dva osnovna dijela mjerne linije, osim cijevi bez kojih strujanje nebi bilo ostvarivo, jer su ostali dijelovi mjerne linije, koji su korišteni, iz Laboratorija za procesna mjerenja (LPM). Ostali dijelovi koji su prikazani i detaljnije opisani uz ventilator i oštru prigušnicu u poglavlju 6. Opis mjerenja, su potenciometar, termometar, pretvornik, digitalni tlakomjer i anemometar, te prijenosno računalo. U dodatnom dijelu mjerenja su korišteni sušilo za kosu za ostvarivanje strujanja i prijenosni transformator za regulaciju protoka zraka.

4.3. Karakterizacija mjerne linije

Glavna značajka mjerne linije je oštra prigušnica jer se prema njoj u ovom slučaju postavljaju ostali dijelovi mjerne linije, te će se na njoj bazirati sve ostalo. U praksi je naravno obrnuta situacija gdje se oštra prigušnica prilagođava sustavu u kojem je potrebno mjeriti protok, ali u ovom slučaju moramo napraviti mjernu liniju kako se došlo do karakterizacije oštre prigušnice te svi dijelovi moraju biti prilagođeni prigušnici.

Prigušnica je namijenjena za maksimalni protok od $Q_v=10m^3/h$, te maksimalni pad tlaka od $\Delta p=1kPa$. Prema tim podacima su birani ventilator da ne prelazi maksimalni protok, pretvornik za odgovarajući pad tlaka, kao i precizni tlakomjer. Također odabran je i anemometar koji može mjeriti dovoljno precizno brzinu strujanja, te termometar za temperaturu zraka koji struji.
Ranije opisana norma ISO 5167, po kojoj se moramo voditi kako bi jednadžbe za koeficijente i faktore mogli koristiti, nam služi kako bi mogli odabrati pravilan omjer svijetlog otvora cijevi u odnosu na svijetli otvor oštre prigušnice. Također prema knjizi 'Flow Handbook' ćemo karakterizirati strujanje, te određivati Reynoldsov broj koji nam je presudan za računanje koeficijenta C. Koeficjent C je u odnosu na faktore E i ε puno značajniji u jednadžbi za računanje protoka (4). Faktor E ovisi samo o svijetlim otvorima cijevi i oštre prigušnice, a faktor ε se zanemaruje, odnosno teži u 1, zbog toga jer se omjer statičkih tlakova može zanemariti, jer teži u 1.

Ograničenja koja norma ISO 5167 postavlja su u skladu sa mjerenom linijom. Svijetli promjer oštre prigušnice je veći od 12.5mm, a omjer $\beta=0.601$, što je također u skladu sa ograničnjima propisanim u normi. Ograničenja kažu da se faktor ε može računati ako je omjer tlakova prije oštre prigušnice (p_1) i nakon (p_2) veći od 0.75, što također odgovara jer je omjer tlakova ≈ 1.

Duljina cijevi prije oštre prigušnice i poslije oštre prigušnice određena je preko omjera $\beta=0.601$. Prema ovom omjeru potrebna duljina cijevi prije oštre prigušnice je minimalno 40 puta veća od unutarnjeg promjera cijevi, a potrebna duljina poslije cijevi mora biti najmanje 5 puta veća od unutarnjeg promjera cijevi.

Uz samu karakterizaciju sustava je napravljena i simulacija strujanja u programu Solidworks, gdje je za ulazni protok postavljena vrijednost $10\text{m}^3/\text{h}$, kao i ostale mjere elemenata koji su potrebni za konstrukciju mjerne linije u kojoj će biti simulirano strujanje zraka.

![Slika 10. Vrijednosti relativnog tlaka unutar mjerne linije](image-url)
Slika 10. prikazuje vrijednost relativnog tlaka koje su dobivene simulacijom, ove vrijednosti relativnog tlaka su koristile kako bi odredili koliko nam precizno mjerilo tlaka treba. Za diferencijalni tlak prije i poslije prigušnice od otprilike 300Pa je moralo biti odabrano visokoprecizno mjerilo tlaka.

Karakerizacija je uz simulaciju strujanja poslužila za odabir, ne samo komponenti mjerne linije, nego i za bolji odabir mjerila koja su nam potrebna u mjernoj liniji (termometar, anemometar, pretvornik i mjerilo tlaka) kako bi mjerenja bila što preciznija.
5. Mjerne pogreške i mjerna nesigurnost

5.1. Mjerne pogreške

Mjerenja uz sebe vežu mjernu nesigurnost. Mjerna nesigurnost nastaje zbog mjernih pogrešaka, a dodaje se rezultatu mjerenja kao podatak, koji nam govori s kolikom nesigurnošću je izmjerena neka vrijednost. Svaki rezultat mjerenja će biti izmjeren uz određenu nesigurnost, koja će pokazivati koliko može biti odstupanje izmjerene vrijednosti neke fizikalne veličine od stvarne vrijednosti te iste veličine. Mjerne pogreške koje dovode do mjerne nesigurnosti se dijele na:

1. Tip A – slučajne, neodredljive pogreške
2. Tip B – sustavne, odredljive pogreške

Slučajne mjerne pogreške rezultat su neizbježnih promjena koje nastaju u mjerama, mjernim uređajima, mjernom objektu i okolišu. Njih nije moguće ocijeniti i ispraviti korekcijom, nego se mogu primijetiti i smanjiti velikim brojem mjerenja. Sustavne mjerne pogreške nastaju zbog nesavršenosti mjernih uređaja, mjera, mjernih postupaka i metoda, ali i zbog utjecaja okoliša i subjektivnog utjecaja samog mjeritelja.

5.2. Mjerna nesigurnost

Mjerna nesigurnost se može s obzirom na prethodno navedene mjerne pogreške podijeliti na:

1. Nesigurnost tipa A \((u_A) \) – određuje se statistički iz niza ponovljenih mjerenja
2. Nesigurnost tipa B \((u_B) \) – određuje se na temelju procjena iz iskustva, danih podataka od proizvođača i slično

Ukupna mjerna nesigurnost \((13) \) se definira kao korijen zbroja kvadrata određenih komponenata:

\[
u = \sqrt{u_A^2 + u_B^2} \quad (13)\]
5.2.1. Procjena mjerne nesigurnosti tipa A

Određivanje standardne nesigurnosti A vrste metoda je određivanja nesigurnosti statističkom analizom nizom ponovljenih mjerenja. U ovom slučaju standardna je nesigurnost eksperimentalno standardno odstupanje srednje vrijednosti koji se dobiva aproksimacijom više mjerenja. Srednja vrijednost mjerenja (14) koja se računa iz n broja mjerenja je:

\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad (14) \]

Srednja vrijednost mjerenja \(\bar{x} \) ne predstavlja pravu vrijednost mjerene veličine nego najbolju aproksimaciju iz obavljenog niza mjerenja. Izraz za standardnu devijaciju \(\sigma \) (15) služi kako bi dobili vrijednosti disperzije rezultata oko srednje vrijednosti mjerenja.

\[\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \quad (15) \]

Ako je broj mjerenja velik (\(n > 25 \)), umjesto nazivnika \(n - 1 \) se uzima samo vrijednost \(n \). Standardna devijacija predstavlja točnost s kojom je izvršeno pojedino mjerenje. Što je standardna devijacija manja za niz mjerenja se kaže da je točniji. Velik broj rezultata mjerenja, čije vrijednosti variraju prema načelu slučajnosti, najčešće slijede normalnu razdiobu.

![Slika 11. Normalna razdioba](image-url)
Na slici 1., μ predstavlja očekivanu vrijednost rezultata mjerenja, koja je većinom srednja vrijednost mjerenja \(\bar{x} \). Približno 68,3% rezultata biti će tada unutar intervala radijusa \(\sigma \) oko srednje vrijednosti, 95,44% rezultata će se nalaziti unutar radijusa 2\(\sigma \), a 99,73% unutar radijusa od 3\(\sigma \). Što znači da se unutar radijusa od \(\pm 3\sigma \), nalaze praktički sve pogreške mjerenja.

Iz tog se može zaključiti da je izraz da standardnu nesigurnost tipa A (16):

\[
u_A = \pm \sqrt{\sigma^2} \quad (16)
\]

5.2.2. Procjena mjerne nesigurnosti tipa B

Mjerna nesigurnost tipa B se razliku od mjerne nesigurnosti tipa A ne služi statističkim pristupom, nego procjenom. Procjena se može temeljiti na iskustvu, proračunu, specifikacijama dobivenim od proizvođača ili na temelju logičkog zaključivanja. Ako mjernu nesigurnost uzimamo iz vanjskih umjernica, moramo je podijeliti sa faktorom pokrivanja koji iznosi \(K = 2 \), zato što je tamo izražena kao proširena nesigurnost. Kod računanja mjerne nesigurnosti tipa B, poznat nam je samo interval nesigurnosti u kojem će biti prava vrijednost, te se takva razdioba naziva pravokutna. Standardna nesigurnost za takav tip mjerenja računa se tako da se polu-interval nesigurnosti podijeli sa faktorom \(\sqrt{3} \).

Kod računanja složene mjerne nesigurnosti tipa B potrebno je sve vrijednosti pretvoriti u iste mjerne jedinice, ako imamo više izvora mjerne nesigurnosti. Složena standardna mjerna nesigurnost (17) računa se kao korijen iz zbroja kvadrata mjerne nesigurnosti iz svakog pojedinog izvora:

\[
u_B = \sqrt{u_1^2 + u_2^2 + u_3^2} \quad ... \quad (17)
\]

5.2.3. Proširena mjerna nesigurnost

Proširena mjerna nesigurnost (18) koja se označava sa \(U \) se računa tako da se ukupna mjerna nesigurnost \(u \) pomnoži sa faktorom prekrivanja \(k \) (najčešće \(k = 2 \)).

\[
U = k \cdot u \quad (18)
\]
6. Opis mjerenja

![Slika 12. Postavljena mjerna linija](image)

Protok zraka unutar cijevi (zelene boje) je ostvaren ventilatorom, koji je reguliran na nominalne padove tlaka preko potenciometra. Prolaskom strujanja kroz oštru prigušnicu dolazi do pada tlaka, koji mjeri pretvornik tlaka te podatke šalje na precizni tlakomjer, koji može mjeriti preciznošću od 0.1Pa. Zbog velike preciznosti mjerila dolazilo je do sitnih oscilacija, pa je pomoću prijenosnog računala i programa LPM Logger Wika ostvareno osrednjavanje mjerenja pada tlaka kako bi se dobili što precizniji rezultati. Prije oštire prigušnice je postavljen senzor od termometra, a podatak temperature služi za računanje gustoće zraka. Anemometar sa žarnom niti služi za mjerenje brzine strujanja zraka na izlazu iz cijevi, a vrijednost brzine se očitava preko odvojenog digitalnog prikaza. Podatak brzine strujanja je vrlo bitan kako bi se mogao odrediti Reynoldsov broj, te kako jednadžba za računanje masenog protoka ne bi bila iterativna. U dodatnom mjerenju je strujanje zraka ostvareno sušilom za kosu kako bi se dobili veći protoci zraka, koje je bilo regulirano prijenosnim transformatorom.
6.1. Specifikacija dijelova mjerne linije

1. OŠTRA PRIGUŠNICA

Proizvođač: MATTECH, s.r.o.
Promjer svjetlog otvora: 12.625 mm
Vanjski promjer za cijev: 28.5 mm
Maksimalni pad tlaka: 1 kPa
Maksimalni protok: 10 m³/h
Maksimalna temperatura: 50 °C

2. PRETVORNIK TLAKA

Proizvođač: MKS Instruments
Model: Baratron 120A
Način mjerenja: Apsolutni tlak ili diferencijalni tlak
Mjerno područje: 0-10 mmHg
Izlazni signal: 0 – 10 VDC
Preciznost: 0.12% od ukupnog mjernog područja
Rezolucija: 1 x 10⁻⁶ od ukupnog mjernog područja
Korisno mjerno područje: 1 x 10⁻⁵ od ukupnog mjernog područja
3. DIGITALNI TLAKOMJER

Proizvođač: MKS Instruments
Model: PR4000B
Prikaz: Digitalni (2 kanala)
Mjerno područje: 0 – 10mbar (moguće programiranje)

4. TERMOMETAR

Proizvođač: Fluke
Model: 724
Mjerno područje: -10 – 55 °C
Preciznost: 0.1 °C
5. VENTILATOR

Proizvođač: SUNON
Dimenzije: 40 x 40 x 10 mm
Radni napon: 5 do 13.8 V
Potrošnja energije: 0.96 W
Učinkovitost: 11.9 m³/h (upitna zbog rezultata mjerenja)

6. POTENCIOMETAR

Uređaj služi za pogon i regulaciju ventilatora, odnosno regulaciju protoka zraka.

Radni napon: 0-30 V
Radna struja: 0- 5 A
7. i 8. ANEMOMETAR I DIGITALNI PRIKAZ ANEMOMETRA

Metoda mjerenja: Žarna nit
Mjerna jedinica: m/s
Raspon brzine: 0 – 3 m/s
Očitanje: Digitalno
9. PRIJENOSNO RAČUNALO

![Sučelje programa LPM Logger Wika](image)

Slika 20. Sučelje programa LPM Logger Wika

Dodatni dijelovi mjerne linije:

- **CIJEV**

 Dimenzije: Vanjski promjer \(D_v=28.5\) mm
 Unutranji promjer \(D=21\) mm
 Duljina prije oštre prigušnice \(l_1=1\) m
 Duljina poslije oštre prigušnice \(l_2=0.5\) m

- **SUŠILO ZA KOSU I PRIJENOSNI TRANSFORMATOR**

 Korišteno za regulaciju protoka u dodatnom mjerenju protoka.

![Sušilo za kosu i prijenostni transformator](image)

Slika 21. Sušilo za kosu i prijenostni transformator
6.2. Postupak mjerenja

Mjerenje protoka je rađeno u LPM-u, na način da su postavljene nominalne točke za mjerenje pada tlaka. Ventilator je pušten na maksimalnom broju okretaja te je pad tlaka iznosio 2.4 mbar, određeno je 7 nominalnih točaka pada tlaka za mjerenje protoka. Mjerenje za svaku točku je osrednjavano programom LPM Logger Wika instaliranim na prijenosnom računalu koje je povezano sa digitalnim tlakomjerom. Program LPM Logger Wika sprema izmjereni podatak za pad tlaka na oštroj prigušnici u svakoj sekundi, te ih zapisuje 120 puta (2 min) i tako stvara srednju vrijednost mjerenja za određenu točku, odnosno određeni nominalni pad tlaka. Mjerenje za svaku točku je ponovljeno 3 puta, i svaki put je korištena metoda osrednjavanja iz razloga što pretvornik tlaka i digitalni tlakomjer pokazuju preciznost od 0.1 Pa, pa je određivanje točnog pada tlaka samo očitanjem bilo dosta teško zbog brzog osciliranja.

Uz mjerenje pada tlaka, na potenciometru smo određivali napon na kojem radi ventilator za svaku točku. Termometar koji je postavljen na sredini cijevi između ventilatora i prigušnice je određivao temperaturu u strujanju koja je bila konstantna sva sve nominalne točke. Anemomter je služio za mjerenje brzine na izlazu iz cijevi, teorijski je ta brzina potpuno jednaka kao i brzini unutar cijevi prije prigušnice jer dovoljno nakon oštre prigušnice uspostavlja se jednaka brzina kao i prije oštre prigušnice, a duljina od 0.5 m je bila više nego dovoljna za uspostavljanje brzine. Također, kao i kod mjerenja pada tlaka za sve ove veličine mjerenje je ponovljeno 3 puta, kako bi se utvrdila ponovljivost mjerenja.

Kod dodatnog mjerenja sa sušilom za kosu koje je regulirano prijenosnim transformatorom, pad tlaka je mjeren na potpuno isti način kao i u slučaju ventilatora, osrednjavanjem pomoću programa LPM Logger Wika instaliranom na prijenosnom računalu. Napon sa prijenosnog transformatora je zapisivan za svaku točku mjerenja. U slučaju mjerenja protoka zraka kroz cijev sa sušilom za kosu su mjereni padovi tlaka do 5 mbar, te je bilo 6 nominalnih točaka za pad tlaka.
7. Rezultati mjerenja i proračun za protok

Rezultati su zapisivani u programu MS-Excel, u kojem je rađen i proračun za koeficijente C, faktor E i maseni protok zraka. Određivanje Reynoldsovog broja je rađeno preko grafikona u knjizi 'Flow handbook' te je on korišten za računanje ostalih potrebnih podataka.

7.1. Rezultati mjerenja

Rezultati osrednjavanog pada tlaka iz programa LPM Logger Wika neće biti prikazani jer je postupak da se 120 sličnih rezultata zbroji i podijeli sa 120 kako bi se dobila što točnija vrijednost pada tlaka.

Tablica 6. Rezultati mjerenja - ventilator

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25,1</td>
<td>0</td>
</tr>
<tr>
<td>1-2</td>
<td>0,4</td>
<td>5</td>
<td>0,414</td>
<td>24,5</td>
<td>0,905</td>
</tr>
<tr>
<td>1-3</td>
<td>0,8</td>
<td>7</td>
<td>0,821</td>
<td>24,5</td>
<td>1,21</td>
</tr>
<tr>
<td>1-4</td>
<td>1,2</td>
<td>9</td>
<td>1,21</td>
<td>24,5</td>
<td>1,425</td>
</tr>
<tr>
<td>1-5</td>
<td>1,6</td>
<td>10,3</td>
<td>1,59</td>
<td>24,5</td>
<td>1,605</td>
</tr>
<tr>
<td>1-6</td>
<td>2</td>
<td>12</td>
<td>2,023</td>
<td>24,5</td>
<td>1,77</td>
</tr>
<tr>
<td>1-7</td>
<td>2,4</td>
<td>13,5</td>
<td>2,402</td>
<td>24,5</td>
<td>1,97</td>
</tr>
<tr>
<td>2-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24,9</td>
<td>0</td>
</tr>
<tr>
<td>2-2</td>
<td>0,4</td>
<td>4,9</td>
<td>0,377</td>
<td>24,6</td>
<td>0,91</td>
</tr>
<tr>
<td>2-3</td>
<td>0,8</td>
<td>7,1</td>
<td>0,819</td>
<td>24,6</td>
<td>1,265</td>
</tr>
<tr>
<td>2-4</td>
<td>1,2</td>
<td>8,9</td>
<td>1,204</td>
<td>24,6</td>
<td>1,475</td>
</tr>
<tr>
<td>2-5</td>
<td>1,6</td>
<td>10,3</td>
<td>1,61</td>
<td>24,6</td>
<td>1,67</td>
</tr>
<tr>
<td>2-6</td>
<td>2</td>
<td>12</td>
<td>1,997</td>
<td>24,7</td>
<td>1,815</td>
</tr>
<tr>
<td>2-7</td>
<td>2,4</td>
<td>13,8</td>
<td>2,408</td>
<td>24,9</td>
<td>1,97</td>
</tr>
<tr>
<td>3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24,9</td>
<td>0</td>
</tr>
<tr>
<td>3-2</td>
<td>0,4</td>
<td>4,8</td>
<td>0,386</td>
<td>24,7</td>
<td>0,9</td>
</tr>
<tr>
<td>3-3</td>
<td>0,8</td>
<td>7</td>
<td>0,815</td>
<td>24,7</td>
<td>1,265</td>
</tr>
<tr>
<td>3-4</td>
<td>1,2</td>
<td>9</td>
<td>1,204</td>
<td>24,7</td>
<td>1,475</td>
</tr>
<tr>
<td>3-5</td>
<td>1,6</td>
<td>10,2</td>
<td>1,606</td>
<td>24,8</td>
<td>1,66</td>
</tr>
<tr>
<td>3-6</td>
<td>2</td>
<td>12</td>
<td>2,021</td>
<td>24,8</td>
<td>1,83</td>
</tr>
<tr>
<td>3-7</td>
<td>2,4</td>
<td>13,9</td>
<td>2,403</td>
<td>25,1</td>
<td>1,96</td>
</tr>
</tbody>
</table>
U tablici 6. su tri mjerenja za pad tlaka na oštroj prigušnici u slučaju uspostavljanja strujanja kroz cijev uz pomoć ventilatora reguliranog potenciometrom, a u tablici 7. su prikazana tri mjerenja za pad tlaka na oštroj prigušnici u slučaju sušila za kosu reguliranog pomoću prijenosnog transformatora.

Tablica 7. Rezultati mjerenja - sušilo za kosu

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25,3</td>
<td>0</td>
</tr>
<tr>
<td>1-2</td>
<td>1</td>
<td>75</td>
<td>1,083</td>
<td>24,8</td>
<td>1,72</td>
</tr>
<tr>
<td>1-3</td>
<td>2</td>
<td>82</td>
<td>2,024</td>
<td>24,9</td>
<td>2,16</td>
</tr>
<tr>
<td>1-4</td>
<td>3</td>
<td>88</td>
<td>3,047</td>
<td>24,9</td>
<td>2,54</td>
</tr>
<tr>
<td>1-5</td>
<td>4</td>
<td>92</td>
<td>4,01</td>
<td>25</td>
<td>2,85</td>
</tr>
<tr>
<td>1-6</td>
<td>5</td>
<td>96</td>
<td>4,885</td>
<td>25</td>
<td>3,12</td>
</tr>
<tr>
<td>2-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25,4</td>
<td>0</td>
</tr>
<tr>
<td>2-2</td>
<td>1</td>
<td>74</td>
<td>1,014</td>
<td>25,1</td>
<td>1,59</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>82</td>
<td>1,948</td>
<td>25,2</td>
<td>2,14</td>
</tr>
<tr>
<td>2-4</td>
<td>3</td>
<td>89</td>
<td>3,187</td>
<td>25</td>
<td>2,58</td>
</tr>
<tr>
<td>2-5</td>
<td>4</td>
<td>94</td>
<td>4,313</td>
<td>25</td>
<td>2,95</td>
</tr>
<tr>
<td>2-6</td>
<td>5</td>
<td>98</td>
<td>5,054</td>
<td>25</td>
<td>3,20</td>
</tr>
<tr>
<td>3-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25,5</td>
<td>0</td>
</tr>
<tr>
<td>3-2</td>
<td>1</td>
<td>75</td>
<td>1,016</td>
<td>25</td>
<td>1,65</td>
</tr>
<tr>
<td>3-3</td>
<td>2</td>
<td>81</td>
<td>1,96</td>
<td>25,1</td>
<td>2,09</td>
</tr>
<tr>
<td>3-4</td>
<td>3</td>
<td>88</td>
<td>3,053</td>
<td>25,1</td>
<td>2,59</td>
</tr>
<tr>
<td>3-5</td>
<td>4</td>
<td>93</td>
<td>4,035</td>
<td>25,1</td>
<td>2,86</td>
</tr>
<tr>
<td>3-6</td>
<td>5</td>
<td>98</td>
<td>5,162</td>
<td>25,2</td>
<td>3,21</td>
</tr>
</tbody>
</table>

U tablici 8. su osrednjene vrijednosti za sve točke mjerenja sa vrijednostima koje su nam potrebne za proračun masenog protoka.

Tablica 8. Osrednjene vrijednosti svih mjerenja

Ventilator		Sušilo za kosu			
Pad tlaka, Δp [mbar]	Temperatura, t [°C]	Brzina strujanja, w [m/s]	Pad tlaka, Δp [mbar]	Temperatura, t [°C]	Brzina strujanja, w [m/s]
0,00	24,97	0,00	0,00	25,40	0,00
0,39	24,60	0,91	1,04	24,97	1,65
0,82	24,60	1,25	1,98	25,07	2,13
1,21	24,60	1,46	3,10	25,00	2,57
1,60	24,63	1,65	4,12	25,03	2,89
2,01	24,67	1,80	5,03	25,07	3,18
2,40	24,83	1,97			
7.2. Proračun protoka

Proračun protoka će biti prikazan za jednu točku u kojoj je mjeren pad tlaka, a vrijednosti za ostala mjerenja će biti prikazane u tablici 9. Za proračun su korištene jednadžbe iz norme ISO 5167 (8 do 12), kao i jednadžba za računanje masenog protoka (4).

Proračun za točku 6. mjerenja protoka zraka ventilatora, pad tlaka $Δp=2.01\text{mbar}$:

Koeficijent $β$:

$$β = \frac{d}{D} = \frac{12,625}{21} = 0,601$$

Faktor E:

$$E = \frac{1}{\sqrt{1-β^4}} = \frac{1}{\sqrt{1-0,601^4}} = 1,0725$$

Faktor $ε$:

$$ε = 1 - (0,351 + 0,256 \cdot β^4 + 0,93 \cdot β^8 \cdot \left[1 - \left(\frac{p_2}{p_1}\right)^{1/κ}\right])$$

Zbog toga što je statički tlak zanemariv, odnosno $p_1≈p_2$, vrijedi:

$$\frac{p_2}{p_1} = 1$$

Jednadžba teži u 1, te je:

$$ε = 1$$

Gustoća zraka prema jednadžbi iz knjige 'Flow Handbook':

$$ρ = ρ_0 \cdot \frac{T_0}{T_0 + t} = 1,293 \cdot \frac{273}{273 + 24,67} = 1,1858 \text{kg} / \text{m}^3$$

Gdje je $ρ_0$ gustoća zraka pri temperaturi od $0°C$.

Reynoldsov broj:

$$Re_D = \frac{ρ \cdot w \cdot D}{μ} = \frac{1,1858 \cdot 1,8 \cdot 0,021}{0,000017} = 2637,3$$
Odnos A:

\[A = \left(\frac{19000 \cdot \beta}{Re_D} \right)^{0.8} = \left(\frac{19000 \cdot 0.601}{2637.3} \right)^{0.8} = 3,231 \]

Koeficijent C (prema jednadžbi 8):

\[C = 0,5961 + 0,0261 \cdot 0,601^2 - 0,216 \cdot 0,601^8 + 0,000521 \left(\frac{10^6 \cdot 0,601}{2637,3} \right)^{0,7} \]

\[+ (0,0188 + 0,0063 \cdot 3,231) \cdot 0,601^{3,5} \cdot \left(\frac{10^6}{2637,3} \right)^{0,3} = 0,664 \]

Maseni protok \(Q_m \):

\[Q_m = C \cdot E \cdot \varepsilon \cdot \frac{\pi}{4} \cdot d^2 \cdot \sqrt{2 \cdot \Delta p \cdot \rho} = 0,664 \cdot 1,07 \cdot 1 \cdot \frac{\pi}{4} \cdot 0,012625^2 \cdot \sqrt{2 \cdot 201 \cdot 1,1858} = \]

\[Q_m = 0,00195 \, \text{kg/s} = 7,01 \, \text{kg/h} \]

U tablici 9. se nalaze rezultati proračuna i bitnih veličina za izračun masenog protoka za oba slučaja ostvarivanja protoka (i s ventilatorom i sa sušilom za kosu). Dijagrami 2. i 3. Pokazuju ovisnost masenog protoka \(Q_m \) u odnosu na pad tlaka na oštroj prigušnici \(\Delta p \).

<table>
<thead>
<tr>
<th>Tablica 9.</th>
<th>Rezultati proračuna i podaci bitnih veličina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator</td>
<td></td>
</tr>
<tr>
<td>(\Delta p) [Pa]</td>
<td>(w) [m/s]</td>
</tr>
<tr>
<td>0,0</td>
<td>0,00</td>
</tr>
<tr>
<td>39,2</td>
<td>0,91</td>
</tr>
<tr>
<td>81,8</td>
<td>1,25</td>
</tr>
<tr>
<td>120,6</td>
<td>1,46</td>
</tr>
<tr>
<td>160,2</td>
<td>1,65</td>
</tr>
<tr>
<td>201,4</td>
<td>1,80</td>
</tr>
<tr>
<td>240,4</td>
<td>1,97</td>
</tr>
<tr>
<td>Sušilo za kosu</td>
<td></td>
</tr>
<tr>
<td>(\Delta p) [Pa]</td>
<td>(w) [m/s]</td>
</tr>
<tr>
<td>0</td>
<td>0,00</td>
</tr>
<tr>
<td>104</td>
<td>1,65</td>
</tr>
<tr>
<td>198</td>
<td>2,13</td>
</tr>
<tr>
<td>310</td>
<td>2,57</td>
</tr>
<tr>
<td>412</td>
<td>2,89</td>
</tr>
<tr>
<td>503</td>
<td>3,18</td>
</tr>
</tbody>
</table>

Fakultet strojarstva i brodogradnje
Dijagram 2. Odnos masenog protoka i pada tlaka na oštroj prigušnici – ventilator

Dijagram 3. Odnos masenog protoka i pada tlaka na oštroj prigušnici - sušilo za kosu

Dijagrami 4. i 5. pokazuju koeficijent C u ovisnosti o brzini strujanja u cijevi, koju smo mjerili na izlazu iz mjerne linije sa anemometrom na žarnu nit. Najutjecajnija veličina na koeficijent C u ovom proračunu je Reynoldsov broj, a na Reynoldsov broj je najutjecajnija veličina u ovom proračunu brzina strujanja mjerena u cijevi. Koeficijent C karakterizira prigušnicu, te je jedan od najutjecajnijih faktora na proračun masenog protoka uz pad tlaka na prigušnici i zato je precizni izračun koeficijenta C jako bitan za kasnije računanje masenog protoka u sustavu. Idelana vrijednost koeficijenta C bi bila 0,6, kada bi Reynoldsov broj bio besnkonačno velik, tako da se na dijagramima 4. i 5. primjećuje pad koeficijenta C sa porastom brzine.
7.3. Procjena i proračun mjerne nesigurnosti

Mjerna nesigurnost je određivana na 7 izvora mjerne nesigurnosti koji su mogli utjecati na računanje masenog protoka. Od tih 7 izvora, tri izvora su titranje mjernog uređaja, greška mjernog uređaja propisana od proizvođača, greška zbog više mjerenja i ova tri izvora se odnose na grešku u mjerenju pada tlaka. Ostala četiri izvora su proračun gustoće koji je vezan na grešku u mjerenju temperature, te površina unutarnjeg promjera cijevi i faktor E koji se odnose na mogućnost pogreške u izračunu koeficijenta β, jer on ovisi o mjerenju...
unutarnjeg promjera cijevi te svijetlog promjera oštre prigušnice. Dok je posljednji izvor mjerne nesigurnosti koeficijent C koji je ovisio o izračunu koeficijenta β, te o izračunu Reynoldsoveg broja koji je naravno bio zavisan o izmjerenoj brzini na anemometru, unutarnjem promjeru cijevi, ali i temperaturi i kojoj je ovisila gustoća.

Sve ove mjerne nesigurnosti koje su mogli utjecati na proračun masenog protoka su dijeljene sa faktorom razdiobe koji iznosi $\sqrt{3}$, kako bi se dobila vrijednost standardnog odstupanja za svaki izvor mjerne nesigurnosti. Iznos koeficijenata osjetljivosti je određivan sa prvom derivacijom, po izvoru mjerne nesigurnosti, jednadžbe za maseni protok. Množenjem standardnog odstupanja i koeficijenta osjetljivosti je određeno standardno odstupanje za svaki izvor mjerne nesigurnosti i smenjeno sa brojem 2, te se dobila proširena mjerna nesigurnost u kg/s.

Mjerna nesigurnost je prikazana za sve točke mjerenja, što znači da je bilo 11 proračuna mjernih nesigurnosti, jer mjerna nesigurnost nije računana za protok od 0 kg/s. U tablicama 10.-15. je prikazan proračun mjerne nesigurnosti za svaku točku mjerenja za određeni nominalni pad tlaka u slučaju ostvarivanja protoka ventilatorom.

Tablica 10. Mjerna nesigurnost za točku nominalnog pada tlaka $\Delta p=0,4$ mbar kod ventilatora

<table>
<thead>
<tr>
<th>Utjecajna veličina</th>
<th>Izvor mjerne nesigurnosti</th>
<th>Mjerna nesigurnost</th>
<th>Faktor razdiobe</th>
<th>Standardno odstupanje</th>
<th>Koeficijent osjetljivosti</th>
<th>Standardno odstupanje protoka [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp [Pa]</td>
<td>Uputa proizvođača</td>
<td>1,2 [Pa]</td>
<td>1,73</td>
<td>0,69282 [Pa]</td>
<td>1,09502E-05 [ms]</td>
<td>7,58655E-06</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Više mjerenja</td>
<td>3,7 [Pa]</td>
<td>1,73</td>
<td>2,13620 [Pa]</td>
<td>1,09502E-05 [ms]</td>
<td>2,13919E-05</td>
</tr>
<tr>
<td>ρ [kg/m3]</td>
<td>Procjena</td>
<td>0,001 [kg/m3]</td>
<td>1,73</td>
<td>0,00057735 [kg/m3]</td>
<td>0,000362881 [ms3]</td>
<td>2,09509E-07</td>
</tr>
<tr>
<td>A [m2]</td>
<td>Procjena</td>
<td>0,00000001 [m2]</td>
<td>1,73</td>
<td>5,7735E-08 [m3]</td>
<td>6,86715116 [kg/m3]</td>
<td>3,96475E-07</td>
</tr>
<tr>
<td>C [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,001293393 [kg/s]</td>
<td>7,46741E-08</td>
</tr>
<tr>
<td>E [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,000801145 [kg/s]</td>
<td>4,62541E-08</td>
</tr>
</tbody>
</table>

Ukupno standardno odstupanje protoka 4,36296E-05

Proširena mjerna nesigurnost ($k=2$) 8,72593E-05
Tablica 11. Mjerna nesigurnost za točku nominalnog pada tlaka $\Delta p=0,8\text{mbar}$ kod ventilatora

<table>
<thead>
<tr>
<th>Utjecajna veličina</th>
<th>Izvor mjerne nesigurnosti</th>
<th>Mjerna nesigurnost</th>
<th>Faktor razdiobe</th>
<th>Standardno odstupanje</th>
<th>Koeficijent osjetljivosti</th>
<th>Standardno odstupanje protoka [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp [Pa]</td>
<td>Titranje mjernog uređaja</td>
<td>4,5 [Pa]</td>
<td>1,73</td>
<td>2,59808 [Pa]</td>
<td>7,58204E-06</td>
<td>1,96987E-05</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Uputa proizvođača</td>
<td>1,2 [Pa]</td>
<td>1,73</td>
<td>0,69282 [Pa]</td>
<td>7,58204E-06</td>
<td>5,25299E-06</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Više mjerenja</td>
<td>0,6 [Pa]</td>
<td>1,73</td>
<td>0,34641 [Pa]</td>
<td>7,58204E-06</td>
<td>2,6265E-06</td>
</tr>
<tr>
<td>ρ [kg/m3]</td>
<td>Procjena</td>
<td>0,001 [kg/m3]</td>
<td>1,73</td>
<td>0,00057735 [kg/m3]</td>
<td>0,000524085 [m3/s]</td>
<td>3,0258E-07</td>
</tr>
<tr>
<td>A [m2]</td>
<td>Procjena</td>
<td>0,0000001 [m2]</td>
<td>1,73</td>
<td>5,7735E-08 [m2]</td>
<td>9,91777209 [kg/m3/s]</td>
<td>5,72603E-07</td>
</tr>
<tr>
<td>C [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,001867962 [-]</td>
<td>1,07847E-07</td>
</tr>
<tr>
<td>E [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,00115704 [-]</td>
<td>6,68018E-08</td>
</tr>
</tbody>
</table>

Ukupno standardno odstupanje protoka 2,05662E-05

Proširena mjerna nesigurnost ($k=2$) 4,11324E-05

Tablica 12. Mjerna nesigurnost za točku nominalnog pada tlaka $\Delta p=1,2\text{mbar}$ kod ventilatora

<table>
<thead>
<tr>
<th>Utjecajna veličina</th>
<th>Izvor mjerne nesigurnosti</th>
<th>Mjerna nesigurnost</th>
<th>Faktor razdiobe</th>
<th>Standardno odstupanje</th>
<th>Koeficijent osjetljivosti</th>
<th>Standardno odstupanje protoka [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp [Pa]</td>
<td>Titranje mjernog uređaja</td>
<td>6,4 [Pa]</td>
<td>1,73</td>
<td>3,69504 [Pa]</td>
<td>6,24565E-06</td>
<td>2,30779E-05</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Uputa proizvođača</td>
<td>1,2 [Pa]</td>
<td>1,73</td>
<td>0,69282 [Pa]</td>
<td>6,24565E-06</td>
<td>4,32711E-06</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Više mjerenja</td>
<td>0,6 [Pa]</td>
<td>1,73</td>
<td>0,34641 [Pa]</td>
<td>6,24565E-06</td>
<td>2,16356E-06</td>
</tr>
<tr>
<td>ρ [kg/m3]</td>
<td>Procjena</td>
<td>0,001 [kg/m3]</td>
<td>1,73</td>
<td>0,00057735 [kg/m3]</td>
<td>0,000636224 [m3/s]</td>
<td>3,67324E-07</td>
</tr>
<tr>
<td>A [m2]</td>
<td>Procjena</td>
<td>0,0000001 [m2]</td>
<td>1,73</td>
<td>5,7735E-08 [m2]</td>
<td>12,03989382 [kg/m3/s]</td>
<td>6,95124E-07</td>
</tr>
<tr>
<td>C [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,002267692 [-]</td>
<td>1,30923E-07</td>
</tr>
<tr>
<td>E [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,001404614 [-]</td>
<td>8,10954E-08</td>
</tr>
</tbody>
</table>

Ukupno standardno odstupanje protoka 2,35932E-05

Proširena mjerna nesigurnost ($k=2$) 4,71864E-05
Tablica 13. Mjerna nesigurnost za točku nominalnog pada tlaka $\Delta p=1,6\text{mbar}$ kod ventilatora

<table>
<thead>
<tr>
<th>Utjecajna veličina</th>
<th>Izvor mjernje nesigurnosti</th>
<th>Mjerna nesigurnost</th>
<th>Faktor razdiobe</th>
<th>Standardno odstupanje</th>
<th>Koefficijent osjetljivosti</th>
<th>Standardno odstupanje protoka [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp [Pa]</td>
<td>Titriranje mjernog uređaja</td>
<td>8,4 [Pa]</td>
<td>1,73</td>
<td>4,84974 [Pa]</td>
<td>5,41901E-06 [ms]</td>
<td>2,30779E-05</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Uputa proizvođača</td>
<td>1,2 [Pa]</td>
<td>1,73</td>
<td>0,69282 [Pa]</td>
<td>5,41901E-06 [ms]</td>
<td>4,32711E-06</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Više mjerenja</td>
<td>2 [Pa]</td>
<td>1,73</td>
<td>1,15470 [Pa]</td>
<td>5,41901E-06 [ms]</td>
<td>2,16356E-06</td>
</tr>
<tr>
<td>ρ [kg/m3]</td>
<td>Procjena</td>
<td>0,001 [kg/m3]</td>
<td>1,73</td>
<td>0,00057735 [kg/m3]</td>
<td>0,000733276 [m3/s]</td>
<td>3,67324E-07</td>
</tr>
<tr>
<td>A [m2]</td>
<td>Procjena</td>
<td>0,0000001 [m2]</td>
<td>1,73</td>
<td>5,7735E-08 [m2]</td>
<td>13,87651019 [kg/m3/s]</td>
<td>6,95124E-07</td>
</tr>
<tr>
<td>C [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,002613571 [kg/s]</td>
<td>1,30923E-07</td>
</tr>
<tr>
<td>E [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,00161888 [kg/s]</td>
<td>8,10954E-08</td>
</tr>
</tbody>
</table>

Ukupno standardno odstupanje protoka 2,72907E-05

Proširena mjerna nesigurnost ($k=2$) 5,45815E-05

Tablica 14. Mjerna nesigurnost za točku nominalnog pada tlaka $\Delta p=2\text{mbar}$ kod ventilatora

<table>
<thead>
<tr>
<th>Utjecajna veličina</th>
<th>Izvor mjernje nesigurnosti</th>
<th>Mjerna nesigurnost</th>
<th>Faktor razdiobe</th>
<th>Standardno odstupanje</th>
<th>Koefficijent osjetljivosti</th>
<th>Standardno odstupanje protoka [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp [Pa]</td>
<td>Uputa proizvođača</td>
<td>1,2 [Pa]</td>
<td>1,73</td>
<td>0,69282 [Pa]</td>
<td>4,83345E-06 [ms]</td>
<td>3,34872E-06</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Više mjerenja</td>
<td>2,6 [Pa]</td>
<td>1,73</td>
<td>1,50111 [Pa]</td>
<td>4,83345E-06 [ms]</td>
<td>7,25555E-06</td>
</tr>
<tr>
<td>ρ [kg/m3]</td>
<td>Procjena</td>
<td>0,001 [kg/m3]</td>
<td>1,73</td>
<td>0,000577735 [kg/m3]</td>
<td>0,000822111 [m3/s]</td>
<td>4,74646E-07</td>
</tr>
<tr>
<td>A [m2]</td>
<td>Procjena</td>
<td>0,0000001 [m2]</td>
<td>1,73</td>
<td>5,7735E-08 [m2]</td>
<td>15,55760689 [kg/m3/s]</td>
<td>8,98219E-07</td>
</tr>
<tr>
<td>C [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,002930197 [kg/s]</td>
<td>1,69175E-07</td>
</tr>
<tr>
<td>E [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,001815002 [kg/s]</td>
<td>1,04789E-07</td>
</tr>
</tbody>
</table>

Ukupno standardno odstupanje protoka 3,2547E-05

Proširena mjerna nesigurnost ($k=2$) 6,50939E-05
Tablica 15. Mjerna nesigurnost za točku nominalnog pada tlaka $\Delta p = 2\, \text{Ambar}$ kod ventilatora

<table>
<thead>
<tr>
<th>Utjecajna veličina</th>
<th>Izvor mjerne nesigurnosti</th>
<th>Mjerna nesigurnost</th>
<th>Faktor razdiobe</th>
<th>Standardno odstupanje</th>
<th>Koefficijent osjetljivosti</th>
<th>Standardno odstupanje protoka [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δp [Pa]</td>
<td>Uputa proizvođača</td>
<td>1,2 [Pa]</td>
<td>1,73</td>
<td>0,69282 [Pa]</td>
<td>4,42338E-06 [ms]</td>
<td>9,39181E-12</td>
</tr>
<tr>
<td>Δp [Pa]</td>
<td>Više mjerenja</td>
<td>0,6 [Pa]</td>
<td>1,73</td>
<td>0,34641 [Pa]</td>
<td>4,42338E-06 [ms]</td>
<td>2,34795E-12</td>
</tr>
<tr>
<td>ρ [kg/m3]</td>
<td>Procjena</td>
<td>0,001 [kg/m3]</td>
<td>1,73</td>
<td>0,00057735 [kg/m3]</td>
<td>0,000898326 [m3/s]</td>
<td>2,68996E-13</td>
</tr>
<tr>
<td>A [m2]</td>
<td>Procjena</td>
<td>0,0000001 [m2]</td>
<td>1,73</td>
<td>5,7735E-08 [m2]</td>
<td>16,99989903 [kg/m3]</td>
<td>3,6322E-13</td>
</tr>
<tr>
<td>C [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,003201845 [kg/s]</td>
<td>3,41727E-14</td>
</tr>
<tr>
<td>E [-]</td>
<td>Procjena</td>
<td>0,0001 [-]</td>
<td>1,73</td>
<td>5,7735E-05 [-]</td>
<td>0,001983265 [kg/s]</td>
<td>1,31111E-14</td>
</tr>
</tbody>
</table>

Ukupno standardno odstupanje protoka 3,2547E-05

Proširena mjerna nesigurnost ($k=2$) 6,50939E-05

U tablici 16. Su prikazani proračunom dobiveni maseni protoci te mjerne nesigurnosti za slučaj uspostavljanja strujanja zraka ventilatorom. Dijagram 6. pokazuje odnos mjerne nesigurnosti (u postotku) prema svakoj nominalnoj točki pad tlaka kod mjerenja protoka ventilatorom. Rezultati prikazani tablicom i dijagramom pokazuju da su najveća odstupanja u mjerenju kod najmanjeg protoka, razlog tome je to što je pad tlaka jako malen, te su utjecaji na takav pad tlaka visoki što povećava i mjernu nesigurnost.

Tablica 16. Odstupanja kod mjerenja i proračuna protoka u slučaju ventilatora

<table>
<thead>
<tr>
<th>Nominalna točka [mbar]</th>
<th>$\Delta p = 0.4$</th>
<th>$\Delta p = 0.8$</th>
<th>$\Delta p = 1.2$</th>
<th>$\Delta p = 1.6$</th>
<th>$\Delta p = 2$</th>
<th>$\Delta p = 2.4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maseni protok [kg/h]</td>
<td>3,29</td>
<td>4,60</td>
<td>5,51</td>
<td>6,29</td>
<td>7,01</td>
<td>7,61</td>
</tr>
<tr>
<td>Odstupanje [kg/h]</td>
<td>0,314</td>
<td>0,148</td>
<td>0,170</td>
<td>0,196</td>
<td>0,234</td>
<td>0,213</td>
</tr>
<tr>
<td>Razlika [%]</td>
<td>9,55</td>
<td>3,22</td>
<td>3,08</td>
<td>3,12</td>
<td>3,34</td>
<td>2,79</td>
</tr>
</tbody>
</table>
Dijagram 6. Odnos odstupanja izmjerenog protoka i za svaku točku nominalnog pada tlaka kod ventilatora

Mjerne nesigurnosti kod mjerenja protoka uspostavljanjem strujanja sa sušilom za kosu će biti prikazane samo kao rezultati dobivenih odstupanja i razlika u odnosu na izračunati maseni protok u tablici 17., kao i na dijagramu 7.

Tablica 17. Odstupanja kod mjerenja i proračuna protoka u slučaju ventilatora

<table>
<thead>
<tr>
<th>Nominalna točka [mbar]</th>
<th>$\Delta p=1$</th>
<th>$\Delta p=2$</th>
<th>$\Delta p=3$</th>
<th>$\Delta p=4$</th>
<th>$\Delta p=5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maseni protok [kg/h]</td>
<td>5,07</td>
<td>6,88</td>
<td>8,52</td>
<td>9,76</td>
<td>10,74</td>
</tr>
<tr>
<td>Odstupanje [kg/h]</td>
<td>0,707</td>
<td>0,861</td>
<td>0,9</td>
<td>1,104</td>
<td>0,932</td>
</tr>
<tr>
<td>Razlika [%]</td>
<td>13,95</td>
<td>12,52</td>
<td>10,57</td>
<td>11,3</td>
<td>8,68</td>
</tr>
</tbody>
</table>

Dijagram 7. Odnos odstupanja izmjerenog protoka i za svaku točku nominalnog pada tlaka kod sušila za kosu
U slučaju uspostavljanja strujanja zraka kroz cijev sa sušilom za kosu može se primijetiti da je puno veća mjerna nesigurnost. Razlog tome je regulacija pomoću prijenosnog transformatora, koji je namijenjen za regulaciju izmjenične struje. Sama po sebi izmjenična struja nije stabilna kao istosmjerna pa zbog toga dolazi do oscilacija, ali i zbog toga što je prijenosni transformator teško regulirati točno i da bude stabilan, te zbog toga dolazi do velikih oscilacija i povećane mjerne nesigurnosti od oko 10%.
8. Zaključak

Mjerenje protoka nije jednostavna vrsta mjerenja, s obzirom na to da treba mjeriti nekoliko mjernih veličina (pad tlaka, temperaturu, apsolutni tlak, i ponekad brzinu strujanja). Pravilna konstrukcija i sastavljanje mjerne linije je bila potrebna kako bi precizno i točno izmjerili mjerne veličine koje su nam potrebne za računanje protoka zraka.

Konstrukcija mjerne linije mjerne linije, odnosno sastavljanje mjerne linije kako bi odgovarala zahtjevima oštire prigušnice, je bio najteži dio ovog rada. Taj dio rada nam je poslužio pri određivanju duljine cijevi prije prigušnice (1m) i duljine cijevi poslije prigušnice (0,5m), ali i za određivanje maksimalnog protoka koji je ograničen na 10m³/h. Primjenom jednostavne simulacije je zaključeno da se bez obzira na male protoke može mjeriti relativno mali pad tlaka, ako će se koristiti dovoljno preciznim mjerilom. Visokoprecizno mjerilo za mjerenje diferencijalnog tlaka je bio Baratron 120A, proizvođača MKS Instruments, te je bilo izrazito korisno jer je vrlo precizno mjerilo padove tlaka (može mjeriti razliku tlaka od 0,1Pa), a i time smanjilo mjernu nesigurnost za do 5 puta u odnosu na neko manje precizno mjerilo. Nakon obavljениh mjerenja je određena mjerna nesigurnost. Mjerna nesigurnost, odnosno odstupanja pri mjerenju protoka sa sušilom za kosu su dosta velika zbog velikih oscilacija kod relativno malih padova tlaka (do 500Pa), odstupanja su bila oko 10%, ali zato je stabilnije strujanje bilo ono uspostavljeno ventilatorom jer je on spojen na istosmjernu struju (pad tlaka do 240Pa), pa nije dolazilo do velikih oscilacija. U slučaju ventilatora, mjerna nesigurnost, odnosno odstupanja su bila znatno manja, oko 3%, iz razloga što je strujanje stabilnije.

Glavna primjena ove oštire prigušnice je za manje protoke, koji su stabilni, jer je i sami svijetli otvor oštire prigušnice praktički minimalan da bi bio unutar ograničenja za normu ISO 5167 (d=12,625mm > d_min=12,5mm). Dakako, ako se mjere mali protoci treba imati na umu da se moraju koristiti vrlo precizna mjerila diferencijalnog tlaka.

Mjerna linija i mjerenja su poslužila i za određivanje koeficijenta C koji je glavna značajka strujanja uspostavljenog za ovu oštru prigušnicu. Koečijent C se kretao oko predviđene vrijednosti $(0,64 - 0,67)$, te je ova mjerna linija nakon konstrukcije i sastavljanja, poslužila mjerenju protoka što je bio i cilj zadatka.
Literatura

Prilozi

I. CD-R disc
II. Tehnička dokumentacija
<table>
<thead>
<tr>
<th>Poz.</th>
<th>Naziv dijela</th>
<th>Kom.</th>
<th>Crtež broj</th>
<th>Norma</th>
<th>Materijal</th>
<th>Sirove dimenzije</th>
<th>Masa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brtva</td>
<td></td>
<td></td>
<td></td>
<td>Legirani čelik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Oštra prigušnica</td>
<td></td>
<td></td>
<td></td>
<td>Legirani čelik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Prednji dio prigušnica</td>
<td></td>
<td></td>
<td></td>
<td>Legirani čelik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Stražnji dio prigušnica</td>
<td></td>
<td></td>
<td></td>
<td>Klingerit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prigušnica

Prigušnica
Oštra prigušnica

Broj naziva - code	Datum	Ime i prezime	Potpis
Projektirao | 20.11.2017 | Luka Vukmirović |
Razradio | 20.11.2017 | Luka Vukmirović |
Crtao | 20.11.2017 | Luka Vukmirović |
Pregledao | | dr. sc. Lovorka Grgec-Bermanec |
Mentor | | |

Napomena:

Materijal:

Masa:

Naziv:

Oštra prigušnica

2

Crtež broj:

Format: A4
List: 1

FSB Zagreb

Objekt broj:

R. N. broj:

Objekt:

ISO - tolerancije

Mentor:

Kopija

Oštra prigušnica

Luka Vukmirović

dr. sc. Lovorka Grgec-Bermanec
Prednji dio prigušnice

ISO - tolerancije

<table>
<thead>
<tr>
<th>Broj naziva - code</th>
<th>Datum</th>
<th>Ime i prezime</th>
<th>Potpis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektirao</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
<tr>
<td>Razradio</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
<tr>
<td>Crtao</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
<tr>
<td>Pregledao</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
<tr>
<td>Mentor</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
</tbody>
</table>

Napomena:

- Prednji dio prigušnice

Materijal:

1. Fe 310
2. Fe 310
3. Fe 310
4. Fe 310
5. Fe 310
6. Fe 310
7. Fe 310
8. Fe 310
9. Fe 310
10. Fe 310
11. Fe 310
12. Fe 310
13. Fe 310
14. Fe 310
15. Fe 310
16. Fe 310
17. Fe 310
18. Fe 310
19. Fe 310
20. Fe 310
21. Fe 310
22. Fe 310
23. Fe 310
24. Fe 310
25. Fe 310
26. Fe 310
27. Fe 310
28. Fe 310
29. Fe 310
30. Fe 310
31. Fe 310
32. Fe 310
33. Fe 310
34. Fe 310
35. Fe 310
36. Fe 310
37. Fe 310
38. Fe 310
39. Fe 310
40. Fe 310
41. Fe 310
42. Fe 310
43. Fe 310
44. Fe 310
45. Fe 310
46. Fe 310
47. Fe 310
48. Fe 310
49. Fe 310
50. Fe 310
51. Fe 310
52. Fe 310
53. Fe 310
54. Fe 310
55. Fe 310
56. Fe 310
57. Fe 310
58. Fe 310
59. Fe 310
60. Fe 310
61. Fe 310
62. Fe 310
63. Fe 310
64. Fe 310
65. Fe 310
66. Fe 310
67. Fe 310
68. Fe 310
69. Fe 310
70. Fe 310
71. Fe 310
72. Fe 310
73. Fe 310
74. Fe 310
75. Fe 310
76. Fe 310
77. Fe 310
78. Fe 310
79. Fe 310
80. Fe 310
81. Fe 310
82. Fe 310
83. Fe 310
84. Fe 310
85. Fe 310
86. Fe 310
87. Fe 310
88. Fe 310
89. Fe 310
90. Fe 310
91. Fe 310
92. Fe 310
93. Fe 310
94. Fe 310
95. Fe 310
96. Fe 310
97. Fe 310
98. Fe 310
99. Fe 310
100. Fe 310

Mjerilo originala:

- 1:1

Kopija:

- Format: A4
- List: 1
- Listova: 1

Projektirao:

- dr. sc. Lovorka Grgec-Bermanec

Pregledao:

- dr. sc. Lovorka Grgec-Bermanec

Crtao:

- dr. sc. Lovorka Grgec-Bermanec

Objektni:

- dr. sc. Lovorka Grgec-Bermanec

Datum:

R. N. broj:

<table>
<thead>
<tr>
<th>Broj naziva - code</th>
<th>Datum</th>
<th>Ime i prezime</th>
<th>Potpis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektirao</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
<tr>
<td>Razradio</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
<tr>
<td>Crtao</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
<tr>
<td>Pregledao</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
<tr>
<td>Mentor</td>
<td>20.11.2017</td>
<td>Luka Vukmirović</td>
<td></td>
</tr>
</tbody>
</table>

ISO - tolerancije

Objekt: Stražnji dio prigušnice

Objekt broj: R. N. broj:

Napomena:

Materijal:

Masa:

Naziv: Stražnji dio prigušnice

Pozicija: 4

Format: A4

List: 1

Listova: 1

Kopija:

Mjerilo originala:

Mjenilo originala: 1:1

Crtež broj: