Analiza efikasnosti eliptičnog krila paraboličnom nosećom linijom

Uroda, Anamaria (2018) Analiza efikasnosti eliptičnog krila paraboličnom nosećom linijom. = Elliptic panform parabolic lifting line wing aerodynamic efficiency analysis. Undergraduate thesis , Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje, UNSPECIFIED. Mentor: Matijašević, Dubravko.

[img]
Preview
Text
AURODA_Zavrsni_rad.pdf - Published Version Jezik dokumenta:Croatian

Download (1MB) | Preview
[img] Text
Uroda_Anamaria_autorska_izjava_završni rad_2018.pdf - Published Version
Restricted to Repository staff only Jezik dokumenta:Croatian

Download (445kB)

Abstract (Croatian)

U radu je provedena analiza jedne klase krila srpaste geometrije, konkretno eliptičnih krila sa paraboličnom nosećom linijom. Metoda korištena za analizu je temeljena na Prandltovoj teoriji noseće linije koja je proširena Pistolesi-Weissingerovim uvjetom. U korištenoj metodi se javlja singularna integrodiferencijalna jednadžba Prandltovog tipa, u kojoj se singularitet otklanja konačnom Hilbertovom transformacijom funkcije cirkulacije. Numerički se nepoznata cirkulacija aproksimira Čebiševljenim polinomima druge vrste prointegriranih Gauss-Čebiševljevom kvadraturnom formulom.

Abstract

A class of crescent moon wings was analysed in this thessis, in specific, an elliptic planform wing with parabolic lifting line. Applied method is based on Prandlt’s lifting line theory extended with Pistolesi-Weissinger condition. In the method integrodifferential equation of Prandlt’s type apears, where finite Hilbert transform of circulation is used to remove singularity. Numerically, unknown circulation function is approximated by Chebishev polynomials of second kind which are then integrated by Gauss-Chebishev quadrature formula.

Item Type: Thesis (Undergraduate thesis)
Uncontrolled Keywords: Noseća linija, Pistolesi-Weissinger, Prandlt, eliptično krilo, Hilbert, Gauss-Čebiševljeva kvadratrna formula
Keywords (Croatian): Lifting line, Pistolesi-Weissinger, Prandlt, elliptic wing palanform, Hilbert, Gauss-Chebishev quadrature method
Subjects: TECHNICAL SCIENCE > Aviation, rocket and space technology > Mechanical Systems Dynamics and Mechanism Theory Laboratory
Divisions: 1300 Department of Aeronautical Engineering > 1320 Chair of Aircraft Dynamics
Date Deposited: 24 Sep 2018 10:02
Last Modified: 10 Oct 2018 08:58
URI: http://repozitorij.fsb.hr/id/eprint/8813

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

Nema podataka za dohvacanje citata